ORGANIC
LETTERS
2009
Vol. 11, No. 9
1971-1974
Total Synthesis of Spiruchostatin A via
Chemoselective Macrocyclization using
an Accessible Enantiomerically Pure
Latent Thioester
Nicole A. Calandra, Yim Ling Cheng, Kimberly A. Kocak, and Justin S. Miller*
Department of Chemistry, Hobart and William Smith Colleges, GeneVa, New York 14456
Received March 2, 2009
ABSTRACT
HDAC inhibitor Spiruchostatin A was synthesized via a route that differs significantly from previously reported routes. The key step involves
a latent thioester that initiates a chemoselective transformation similar to native chemical ligation to form the macrocyclic alanine-cysteine
amide bond. The easily prepared latent thioestersthe first such moiety reported in enantiomerically pure formsis designed with a pendant
carboxylic acid to serve as a solid-phase linker for the synthesis of cyclic, cysteine-containing, peptidic materials.
Spiruchostatin A (1a)1 is a member of a class of cyclic,
cysteine-containing, depsipeptidic natural products shown in
Figure 1 that also includes FK228 (2)2 and FR901,375 (3),3
and can also include Largazole (4).4 Due to their histone
deacetylase (HDAC) inhibitory activity, tremendous effort
has been thrust into the synthesis of these compounds and
their analogs as potential chemotherapeutic targets.5-7 Struc-
tural features shared by these molecules include an (S,E)-
3-hydroxy-7-mercapto-4-heptenoate (Hmh) residue shown in
blue, in most cases a D-Cys residue illustrated in green, and
an Ala or Val residue drawn in red appended to the Hmh
(7) (a) Crabb, S. J.; Howell, M.; Rogers, H.; Ishfaq, M.; Yurek-George,
A.; Carey, K.; Pickering, B. M.; East, P.; Mitter, R.; Maeda, S.; Johnson,
P. W.; Townsend, P.; Shin-ya, K.; Yoshida, M.; Ganesan, A.; Packham, G.
Biochem. Pharmacol. 2008, 76, 463. (b) Shigematsu, N.; Ueda, H.; Takase,
S.; Tanaka, H.; Yamamoto, K.; Tada, T. J. Antibiot. 1994, 47, 311. (c)
Ueda, H.; Manda, T.; Matsumoto, S.; Mukumoto, S.; Nishigaki, F.;
Kawamura, I.; Shimomura, K. J. Antibiot. 1994, 47, 315. (d) Bowers, A. A.;
West, N.; Taunton, J.; Schreiber, S. L.; Bradner, J. E.; Williams, R. M.
J. Am. Chem. Soc. 2008, 130, 11219. (e) Nasveschuk, C. G.; Ungermannova,
D.; Liu, X.; Phillips, A. J. Org. Lett. 2008, 10, 3595. (f) Numajiri, Y.;
Takahashi, T.; Takagi, M.; Shin-ya, K.; Doi, T. Synlett 2008, 16, 2483. (g)
Seiser, T.; Kamena, F.; Cramer, N. Angew. Chem., Int. Ed. 2008, 47, 6483.
(h) Ying, Y.; Liu, Y.; Byeon, S. R.; Kim, H.; Luesch, H.; Hong, J. Org.
Lett. 2008, 10, 4021. (i) Bowers, A. A.; Greshock, T. J.; West, N.; Estiu,
G.; Schreiber, S. L.; Wiest, O.; Williams, R. M.; Bradner, J. E. J. Am.
Chem. Soc. 2009, 131, 2900. (j) Montero, A.; Beierle, J. M.; Olsen, C. A.;
Ghadiri, M. R. J. Am. Chem. Soc. 2009, 131, 3033. (k) Greshock, T. J.;
Johns, D. M.; Noguchi, Y.; Williams, R. M. Org. Lett. 2008, 10, 613.
(1) Masuoka, Y.; Nagai, A.; Shin-ya, K.; Furihata, K.; Nagai, K.; Suzuki,
K.; Hayakawa, Y.; Seto, H. Tetrahedron Lett. 2001, 42, 41.
(2) Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.; Nishimura, M.; Goto,
T.; Okuhara, M. J. Antibiot. 1994, 47, 301.
(3) Chen, Y.; Gambs, C.; Abe, Y.; Wentworth, P., Jr.; Janda, K. D. J.
Org. Chem. 2003, 68, 8902.
(4) Taori, K.; Paul, V. J.; Luesch, H. J. Am. Chem. Soc. 2008, 130,
1806.
(5) Yurek-George, A.; Habens, F.; Brimmell, M.; Packham, G.; Ganesan,
A. J. Am. Chem. Soc. 2004, 126, 1030.
(6) Yurek-George, A.; Cecil, A. R.; Mo, A. H.; Wen, S.; Rogers, H.;
Habens, F.; Maeda, S.; Yoshida, M.; Packham, G.; Ganesan, A. J. Med.
Chem. 2007, 50, 5720.
10.1021/ol900436f CCC: $40.75
Published on Web 03/30/2009
2009 American Chemical Society