Phthalocyanine–Porphyrin Heterodimers and Heteropentamers
[3] D. Gu, O. Chen, X. Tang, F. Tang, F. Gan, S. Shen, K. Liu,
stirred at 90 °C until all of the lithium was consumed. At this point,
the alkoxide solution was cooled to room temperature, and
ZnCNTTP (130 mg, 0.15 mmol) was added. The reaction mixture
was then heated to 145 °C and stirred under nitrogen for 4 h. The
temperature was then lowered to 80 °C, and Zn(OAc)2·2H2O
(329.3 mg, 1.5 mmol) was added. The reaction mixture was allowed
to stir for an additional 4 h at 80 °C. The reaction mixture was
then cooled to room temperature. Chloroform (100 mL) was added,
and the chloroform layer was washed with water (3ϫ100 mL). The
chloroform layer was collected, concentrated under vacuum, and
loaded onto a silica gel column. Elution with chloroform afforded
the desired product from the second green-brown band. Removal
of the solvent by evaporation afforded a purple solid (46.5 mg,
35%). The purple product was recrystallized from CHCl3/hexane.
UV/Vis (CHCl3): λmax (log ε) = 426 (6.11), 558 (4.86), 603 (4.70),
H. Xu, Proc. SPIE-Int. Soc. Opt. Eng. 1996, 2931, 67–72.
L. E. Norena-Franco, F. Kvasnik, Analyst 1996, 121, 1115–
1118.
[4]
[5]
[6]
A. M. Hagfeldt, Acc. Chem. Res. 2000, 33, 269–277.
S. L. Haywood-Small, D. I. Vernon, J. Griffiths, S. B. Brown,
Biochem. Biophys. Res. Commun. 2006, 339, 569–576.
S. Gaspard, C. Giannotti, P. Maillard, C. Schaeffer, T. H. Tran-
Thi, J. Chem. Soc., Chem. Commun. 1986, 1239–1240.
a) J.-Z. Li, J. R. Diers, J. Seth, S. I. Yang, D. F. Bocian, D.
Holten, J. S. Lindesey, J. Org. Chem. 1999, 64, 9090–9100; b)
J.-Z. Li, J. S. Lindesey, J. Org. Chem. 1999, 64, 9101–9108; c)
S. I. Yang, J.-Z. Li, H. S. Cho, D. Kim, D. F. Bocian, D.
Holten, J. S. Lindsey, J. Mater. Chem. 2000, 10, 283–296; d)
M. A. Miller, R. K. Lammi, S. Prathapan, D. Holten, J. S.
Lindsey, J. Org. Chem. 2000, 65, 6634–6649.
[7]
[8]
[9]
a) J. M. Sutton, R. W. Boyle, Chem. Commun. 2001, 2014–
2015; b) K. Kameyama, A. Satake, Y. Kobuke, Tetrahedron
Lett. 2004, 45, 7617–7620; c) J. P. C. Tomé, A. M. V. M. Per-
eira, C. M. A. Alonso, M. G. P. M. S. Neves, A. C. Tomé,
A. M. S. Silva, J. A. S. Cavaleiro, M. V. Martínez-Díaz, T.
Torres, G. M. A. Rahman, J. Ramey, D. M. Guldi, Eur. J. Org.
Chem. 2006, 257–267.
1
628 (4.76), 695 (5.19) nm. H NMR (400 MHz, CDCl3): δ = 9.18
(br. s, 4 H, phthalocyanine H), 8.87–9.05 (br. m, 32 H, pyrrole H),
7.92–8.23 (br. s, 32 H, phenyl H), 7.39–7.66 (br. m, 32 H, phenyl
H), 7.03–7.18 (br. s, 4 H, phthalocyanine H), 7.85–7.00 (br. s, 4 H,
phthalocyanine H), 2.68 (s, 36 H, CH ) ppm. IR (KBr, in): ν =
˜
3
2923 (CH), 1731, 1633, 1457, 1337, 1205, 1110, 1067, 997, 797,
720 cm–1. MALDI-TOF-MS for C228H154N24Zn5 (3546.7): calcd.
for [M + H]+ 3546.8530; found 3546.8359.
[10]
a) Z.-X. Zhao, A. O. Ogunsipe, M. D. Maree, T. Nyokong, J.
Porphyrins Phthalocyanines 2005, 9, 186–197; b) Z.-X. Zhao,
K. I. Ozoemena, D. M. Maree, T. Nyokong, Dalton Trans.
2005, 1241–1248; c) K. I. Ozoemena, Z.-X. Zhao, T. Nyokong,
Electrochem. Commun. 2005, 7, 679–684; d) Z.-X. Zhao, T.
Nyokong, M. D. Maree, Dalton Trans. 2005, 3732–3737.
A. A. Pletnev, Q.-P. Tian, R. C. Larock, J. Org. Chem. 2002,
67, 9276–9287.
J. Metz, O. Schneider, M. Hanack, Inorg. Chem. 1984, 23,
1065–1071.
T. H. Tran-Thi, C. Desforge, C. Thiec, J. Phys. Chem. 1989, 93,
1226–1233.
P. G. Seybold, M. Gouterman, J. Mol. Spectrosc. 1969, 31, 1–
13.
K. Kalyanasundaram, Photochemistry of Polypyridine and Por-
phyrin Complexes, Academic Press, London, 1992.
A. Köhler, J. Grüner, R. H. Friend, K. Mullen, U. Scherf,
Chem. Phys. Lett. 1995, 243, 456–461.
Zinc Heterodimer [ZnPc-ZnTTP]: SubPc (216 mg, 0.5 mmol) in
DMSO (10 mL) was heated to 60 °C for 2 h while stirring under
nitrogen. ZnCNTTP (86.7 mg, 0.10 mmol), DBU (2 drops), and
hydrated zinc acetate (108 mg, 0.50 mmol) were added to the solu-
tion. The mixture was heated to 120 °C for 24 h while stirring under
nitrogen. After cooling to room temperature, the green reaction
mixture was poured into dichloromethane (100 mL) and washed
with water (3ϫ100 mL) to remove excess zinc acetate, acetic acid,
and DMSO. The dichloromethane layer was collected and concen-
trated which was then applied to a silica gel column. The blue band
consisting of the desired compound was eluted by using a mixture
of dichloromethane and methanol (95:5, v/v). The by-product ZnPc
remained on the top of the column. Removal of the solvents by
evaporation afforded a purple solid (36.9 mg, 28%). The purple
product ZnPc-ZnTTP was recrystallized from CH2Cl2/methanol.
UV/Vis (CHCl3) : λmax (log ε) = 426 (5.95), 555 (4.67), 610 (4.80),
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
H. C. Gatos, J. Lagowski, R. Banisch, Photogr. Sci. Eng. 1982,
26, 42–49.
J. Zhang, D. J. Wang, T. S. Shi, B. H. Wang, J. Z. Sun, T. J. Li,
Thin Solid Films 1996, 284/285, 596–599.
J. Zhang, D. J. Wang, Y. M. Chen, T. J. Li, H. F. Mao, H. J.
Tian, Q. F. Zhou, H. J. Xu, Thin Solids Films 1997, 300, 208–
212.
1
652 (4.93), 676 (5.47) nm. H NMR (400 MHz, [D6]DMSO): δ =
9.28 (br. s, 4 H, phthalocyanine H), 9.10 (br. s, 1 H, phthalocyanine
H), 9.00 (br. s, 1 H, phthalocyanine H), 8.68–8.87 (br. m, 8 H,
pyrrole H), 8.47–8.65 (br. m, 2 H, phenyl H), 7.98–8.28 (br. m, 12
H, phenyl and phthalocyanine H), 7.50–7.70 (br. m, 8 H, phenyl
[20]
[21]
D. J. Wang, J. Zhang, T. S. Shi, B. H. Wang, X. Z. Cao, T. J.
Li, J. Photochem. Photobiol., A 1996, 93, 21–25.
a) P. Matlaba, T. Nyokong, Polyhedron 2002, 21, 2463; b)
A. B. P. Lever, E. R. Milaeva, G. Speier, Phthalocyanines: Prop-
erties and Applications, C. C. Leznoff, A. B. P. Lever (Eds.), vol.
3, ch, 1, VCH, New York, 1993.
H), 2.67 (s, 9 H, CH ) ppm. IR (KBr, in): ν = 2923, 1722, 1486,
˜
3
1464, 1332, 1093, 997, 797, 721 cm–1. FAB-MS: m/z = 1320.3
[M]+. MALDI-TOF-MS for C81H48N12Zn2 (1320.1): calcd. for
[M]+ 1320.2683; found 1320.2710.
[22]
[23]
a) D. G. Mclean, R. L. Sutherland, M. C. Brant, D. M. Brand-
elik, Opt. Lett. 1993, 18, 858–860; b) S. Fu, X. Zhu, G. Zhou,
W.-Y. Wong, C. Ye, W.-K. Wong, Z. Li, Eur. J. Inorg. Chem.
2007, 2004–2013.
Acknowledgments
The work described in this paper was partially supported by a grant
from the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, P.R. China (HKBU 2023/04P) and a grant
from the Hong Kong Baptist University (FRG/03–04/II-05).
a) X. Zhong, Y. Feng, S.-L Ong, J. Hu, W.-J. Ng, Z. Wang,
Chem. Commun. 2003, 1882–1883; b) A. Krivokapic, H. L. An-
derson, G. Bourhill, R. Ives, S. Clark, K. J. McEwan, Adv. Ma-
ter. 2001, 13, 652–656; c) G. Y. Yang, S. G. Ang, L. L. Chng,
Y. W. Lee, E. W.-P. Lau, K. S. Lai, H. G. Ang, Chem. Eur. J.
2003, 9, 900–904; d) S. Vagin, M. Barthel, D. Dini, M. Hanack,
Inorg. Chem. 2003, 42, 2683–2694; e) R. B. Martin, H. Li, L.
Gu, S. Kumar, C. M. Sanders, Y.-P. Sun, Opt. Mater. 2005, 27,
1340–1345; f) S. Fu, G. Zhou, X. Zhu, C. Ye, W. K. Wong, Z.
Li, Chem. Lett. 2006, 35, 802–803; g) J. W. Perry, K. Mansour,
I.-Y. S. Lee, X.-L. Wu, P. V. Bedworth, C.-T. Chen, D. Ng, S.
Marder, P. Miles, Science 1996, 273, 1533–1536; h) J. W. Perry,
[1] a) G. J. Meyer in Progress in Inorganic Chemistry, Molecular
Level Artificial Photosynthetic Materials, vol. 44, Jossey-Bass,
New York, 1996; b) R. W. Wagner, J. S. Lindsey, J. Am. Chem.
Soc. 1994, 116, 9759–9760.
[2] M. S. Xu, J. B. Xu, M. Wang, L. Que, J. Appl. Phys. 2002, 91,
748–752.
Eur. J. Inorg. Chem. 2008, 119–128
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
127