Yu. Sevryugina, M. A. Petrukhina
FULL PAPER
5, 1143–1148; h) T. Cohen, R. J. Ruffner, D. W. Shull, E. R.
Fogel, J. R. Falck, Org. Synth. 1980, 59, 202–212; i) A. H. Le-
win, N. L. Goldberg, Tetrahedron Lett. 1972, 6, 491–492; j)
W. R. H. Hurtley, J. Chem. Soc. 1929, 1870–1873; k) H. L.
Aalten, G. van Koten, K. Goubitz, C. H. Stam, Organometal-
lics 1989, 8, 2293–2299.
X-ray Crystallography: The X-ray diffraction data for single crys-
tals were collected on a Bruker SMART APEX CCD-based dif-
fractometer by using a Mo-target X-ray tube (λ = 0.71073 Å) oper-
ated at 1800 W power. Crystal data and data collection parameters
for 1, 3–6 are listed in Table 3. A total of 1850 frames were collected
with a scan width of 0.3° in ω and an exposure time of 30 s/frame
for each experiment. The frames were integrated with the Bruker
SAINT software package[28] using a narrow-frame integration algo-
rithm. Analysis of the data showed negligible decay during data
collection. The structures were solved by the direct methods and
refined with the Bruker SHELXTL (Version 6.1) software pack-
age.[29] Data were corrected for absorption effects using the empiri-
cal methods SADABS.[30]
[2] P. Weber, H.-D. Hardt, Inorg. Chim. Acta 1981, 64, L51–L53.
[3] a) D. A. Edwards, R. Richards, J. Chem. Soc. Dalton Trans.
1973, 2463–2468; b) T. Ogura, Q. Fernando, Inorg. Chem. 1973,
12, 2611–2615.
[4]
W. Klaui, B. Lenders, B. Hessner, K. Evertz, Organometallics
1988, 7, 1357–1363.
a) M. G. B. Drew, D. A. Edwards, R. Richards, J. Chem. Soc.
Chem. Commun. 1973, 124–125; b) T. Ogura, R. D. Mounts,
Q. Fernando, J. Am. Chem. Soc. 1973, 95, 949–951; c) R. D.
Mounts, T. Ogura, Q. Fernando, Inorg. Chem. 1974, 13, 802–
805.
M. G. B. Drew, D. A. Edwards, R. Richards, J. Chem. Soc. Dal-
ton Trans. 1977, 299–303.
F. A. Cotton, E. V. Dikarev, M. A. Petrukhina, Inorg. Chem.
2000, 39, 6072–6079.
T. Sugiura, H. Yoshikawa, K. Awaga, Inorg. Chem. 2006, 45,
7584–7586.
Y. Sevryugina, D. D. Vaughn II, M. A. Petrukhina, Inorg.
Chim. Acta 2007, 360, 3103–3107.
Y. Sevryugina, O. Hietsoi, M. A. Petrukhina, Chem. Commun.
2007, 3853–3855.
[5]
All non-hydrogen atoms were refined anisotropically, except for dis-
ordered carbon and fluorine atoms. The fluorine atoms of the CF3
groups in 1, 3–6 were disordered over two or three rotational orien-
tations, and this disorder was modeled individually in each case. In
compounds 1 and 3, in addition to the CF3 rotational disorder,
some benzene rings of the bridging carboxylate groups were disor-
dered over two orientations. Moreover, in complex 3, both fluoran-
thene molecules exhibited crystallographically imposed disorder
due to internal symmetry elements, and that was modeled individu-
ally. A crystallographically imposed disorder of coronene was pres-
ent in complex 6. Hydrogen atoms in compound 5 were found in
the difference Fourier map and refined independently, while in the
structures 1, 3, 4, and 6 all hydrogen atoms were included at ideal-
ized positions for structure-factor calculations.
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
Y. Sevryugina, A. Yu. Rogachev, M. A. Petrukhina, Inorg.
Chem. 2007, 46, 7870–7879.
a) J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim,
1995; b) A. Williams, Chem. Eur. J. 1997, 3, 15–19.
a) C. Dietrich-Bucheker, G. Rapenne, J.-P. Sauvage, Chem.
Commun. 1997, 21, 2053–2054; b) T. Kawano, M. Nakanishi,
T. Kato, I. Ueda, Chem. Lett. 2005, 34, 350–351.
E. Murguly, T. B. Norsten, N. R. Branda, Angew. Chem. Int.
Ed. 2001, 40, 1752–1755.
a) E. C. Constable, Tetrahedron 1992, 48, 10013–10059; b)
N. C. Habermehl, P. M. Angus, N. L. Kilah, L. Noren, A. D.
Rae, A. C. Willis, S. B. Wild, Inorg. Chem. 2006, 45, 1445–1462;
c) M. Munakata, L. P. Wu, T. Kuroda-Sowa, Adv. Inorg. Chem.
1999, 46, 173–303.
CCDC-656949 (for 1), -656950 (for 3), -656951 (for 4), -656952 (for
5), -656953 (for 6) contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[14]
[15]
Supporting Information (see also the footnote on the first page of
this article): X-ray powder diffraction data and single crystal struc-
tural details, including the description of disorder in the structure
of 3 and ORTEP diagrams for structures 1, 3–6; photoluminescence
data for 1 and 3,5-bis(trifluoromethyl)benzoic acid.
[16]
[17]
a) G. Margraf, J. W. Bats, M. Bolte, H.-W. Lerner, M. Wagner,
Chem. Commun. 2003, 956–957; b) A. Sundararaman, L. N.
Zakharov, A. L. Rheingold, F. Jäkle, Chem. Commun. 2005,
1708–1710.
Acknowledgments
a) D. D. LeCloux, S. J. Lippard, Inorg. Chem. 1997, 36, 4035–
4046; b) D. J. Darensbourg, D. L. Larkins, J. H. Reibenspies,
Inorg. Chem. 1998, 37, 6125–6128; c) Y. Rondelez, M.-N.
Rager, A. Duprat, O. Reinaud, J. Am. Chem. Soc. 2002, 124,
1334–1340; d) Y. Rondelez, G. Bertho, O. Reinaud, Angew.
Chem. Int. Ed. 2002, 41, 1044–1046; e) E. Kim, E. E. Chufan,
K. Kamaraj, K. D. Karlin, Chem. Rev. 2004, 104, 1077–1133.
a) S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed. 2003, 42,
5400–5449; b) W. Deng, L. Liu, C. Zhang, M. Liu, Q.-X. Guo,
Tetrahedron Lett. 2005, 46, 7295–7298.
P. R. Rodesiler, E. L. Amma, J. Chem. Soc. Chem. Commun.
1974, 599–600.
M. A. Petrukhina, Coord. Chem. Rev. 2007, 251, 1690–1698.
A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
a) R. W. Turner, E. L. Amma, J. Am. Chem. Soc. 1966, 88,
1877–1882; b) M. B. Dines, P. H. Bird, J. Chem. Soc. Chem.
Commun. 1973, 12; c) H. Schmidbaur, W. Bublak, B. Huber,
G. Reber, G. Müller, Angew. Chem. Int. Ed. Engl. 1986, 25,
1089–1090; d) A. Sundararaman, R. A. Lalancette, L. N. Zak-
harov, A. L. Rheingold, F. Jäkle, Organometallics 2003, 22,
3526–3532; e) A. M. Dattelbaum, J. D. Martin, Inorg. Chem.
1999, 38, 6200–6205; f) A. M. Dattelbaum, J. D. Martin, Poly-
hedron 2006, 25, 349–359; g) W. S. Striejewske, R. R. Conry,
Chem. Commun. 1998, 555–556; h) R. R. Conry, W. S. Striejew-
ske, A. A. Tipton, Inorg. Chem. 1999, 38, 2833–2843; i) M. Pas-
We thank the donors of the American Chemical Society Petroleum
Research Fund (PRF 42910-AC3) and the National Science Foun-
dation Career Award (NSF-0546945) for the partial support of this
work. We also acknowledge the National Science Foundation
(NSF) funding of the X-ray powder diffractometer (CHE-0619422)
at the University at Albany. We thank Dr. Roman V. Shpanchenko
(Moscow State University, Russia) for assistance with the X-ray
powder diffraction experiments, Drs. Vadim Tokranov and Michael
Yakimov (College of Nanoscale Science and Engineering, Univer-
sity at Albany) for the photoluminescence measurements of 5, and
Prof. Paul Toscano (University at Albany) for helpful discussions.
[18]
[19]
[20]
[21]
[22]
[1] a) A. Cairncross, J. R. Roland, R. M. Henderson, W. A. Shep-
pard, J. Am. Chem. Soc. 1970, 92, 3187–3189; b) J. Chodowska-
Palicka, M. Nilsson, Acta Chem. Scand. 1971, 25, 3451–3456;
c) D. J. Darensbourg, M. W. Holtcamp, E. M. Longridge, B.
Khandelwal, K. K. Klausmeyer, J. H. Reibenspies, J. Am.
Chem. Soc. 1995, 117, 318–328; d) T. Cohen, R. A. Schambach,
J. Am. Chem. Soc. 1970, 92, 3189–3190; e) T. P. Lockhart, J.
Am. Chem. Soc. 1983, 105, 1940–1946; f) M. Calvin, J. Am.
Chem. Soc. 1939, 61, 2230–2234; g) J. A. Connor, D. Dubow-
ski, A. C. Jones, R. Price, J. Chem. Soc. Perkin Trans. 1 1982,
228
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 219–229