Chemistry - A European Journal
10.1002/chem.201603499
COMMUNICATION
R2
grateful to Umicore for generous support in supplying the
rhodium complex.
R1
X
= NTf2, OAc, or OCOR
O
2
AcOH
O
1/2 O2
H
CpE
=
4
Keywords: Alkynes • Annulation • Isocoumarins • α-Pyrones •
Me
H2
O
OH
Me
EtO2
C
+
Cu(I)
Rhodium
O
2
Me
CO2Et
Rh
Cu(II)
OAcĞ, NTf2
X
Ğ
XH
A
[1]
For recent reviews, see: a) Y. Yang, K. Li, Y. Cheng, D. Wan, M. Li, J.
You, Chem. Commun. 2016, 52, 2872; b) C. G. Newton, D. Kossler, N.
Cramer, J. Am. Chem. Soc. 2016, 138, 3935; c) T. Gensch, M. N.
Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45,
2900; d) M. Miura, T. Satoh, K. Hirano, Bull. Chem. Soc. Jpn. 2014, 87,
751; e) S. I. Kozhushkov, L. Ackermann, Chem. Sci. 2013, 4, 886; f) G.
Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651; g) P. B.
Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879; h)
J. Wencel-Delord, T. Droege, F. Liu, F. Glorius, Chem. Soc. Rev. 2011,
40, 4740; i) T. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212.
For recent reviews, see: a) J. S. Lee, Mar. Drugs 2015, 13, 1581; b) S.
Pal, V. Chatare, M. Pal, Curr. Org. Chem. 2011, 15, 782; c) A. Goel, V.
J. Ram, Tetrahedron 2009, 65, 7865.
CpE
Rh
3
CpE
H
Rh
O
CpE
O
O
R1
Rh
R1
R2
X
R1
O
R2
R2
B
6
E
X
R2
CpE
R1
XH
Rh
Rh CpE
O
O
–
RCO2
O
[2]
RL
O
H
RS
Rh CpE
C
R2
R1
D
CpE
Rh
3
O
[3]
[4]
a) K. Ueura, T. Satoh, M. Miura, Org. Lett. 2007, 9, 1407; b) K. Ueura,
T. Satoh, M. Miura, J. Org. Chem. 2007, 72, 5362.
O2CR
O
O
D'
disfavored
O
a) S. Mochida, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2009, 74,
6295; b) M. Itoh, M. Shimizu, K. Hirano, T. Satoh, M. Miura, J. Org.
Chem. 2013, 78, 11427.
F
estim ated coordination ability to rhodium
n-C5H11
n-C5H11
Ph
Me
Ph
O
O
[5]
a) M. Shimizu, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2009, 74,
3478; b) Q. Li, Y. Yan, X. Wang, B. Gong, X. Tang, J. Shi, H. E. Xu, W.
Yi, RSC Adv. 2013, 3, 23402; c) Y. Unoh, K. Hirano, T. Satoh, M. Miura,
Tetrahedron 2013, 69, 4454.
O
OH
O
Me
Me
Ph
weak
strong
[6]
[7]
D. A. Frasco, C. P. Lilly, P. D. Boyle, E. A. Ison, ACS Catal. 2013, 3,
2421.
Scheme 5. Plausible mechanism for the formation of 4.
a) L. Ackermann, J. Pospech, K. Graczyk, K. Rauch, Org. Lett. 2012,
14, 930; b) R. K. Chinnagolla, M. Jeganmohan, Chem. Commun. 2012,
48, 2030; c) M. Deponti, S. I. Kozhushkov, D. S. Yufit, L. Ackermann,
Org. Biomol. Chem. 2013, 11, 142; d) S. Warratz, C. Kornhaass, A.
Cajaraville, B. Niepoetter, D. Stalke, L. Ackermann, Angew. Chem. Int.
Ed. 2015, 54, 5513; Angew. Chem. 2015, 127, 5604; e) R. Prakash, K.
Shekarrao, S. Gogoi, Org. Lett. 2015, 17, 5264; f) K. S. Singh, S. G.
Sawant, P. H. Dixneuf, ChemCatChem 2016, 8, 1046.
Beneficial effects of minor modification of reaction conditions
can be explained as follows. Coordination of two molecules of
strongly coordinating alkynes to A giving inactive species E
results in low conversion of 2 under the conditions A. When
adding NaOAc (conditions C), strong coordination of in situ
generated carboxylate anion to A accelerates the reactions with
the strongly coordinating alkynes, although this carboxylate
anion may coordinate to C giving inactive species F, which
inhibits the coordination of weakly coordinating alkynes. When
using moderately coordinating alkynes, the use of moderately
[8]
[9]
Y. Yu, L. Huang, W. Wu, H. Jiang, Org. Lett. 2014, 16, 2146.
For the oxidative [4+2] annulation of benzoic acids with alkenes leading
to isocoumarins, see: a) D. Nandi, D. Ghosh, S.-J. Chen, B.-C. Kuo, N.
M. Wang, H. M. Lee, J. Org. Chem. 2013, 78, 3445; b) M. Zhang, H.-J.
Zhang, T. Han, W. Ruan, T.-B. Wen, J. Org. Chem. 2015, 80, 620.
coordinating acetone as
a
solvent at slightly elevated
[10] a) Y. Shibata, K. Tanaka, Angew. Chem. Int. Ed. 2011, 50, 10917;
Angew. Chem. 2011, 123, 11109; b) Y. Hoshino, Y. Shibata, K. Tanaka,
Adv. Synth. Catal. 2014, 356, 1577; c) M. Fukui, Y. Hoshino, T. Satoh,
M. Miura, K. Tanaka, Adv. Synth. Catal. 2014, 356, 1638; d) Y.
Takahama, Y. Shibata, K. Tanaka, Chem. Eur. J. 2015, 21, 9053; e) Y.
Takahama, Y. Shibata, K. Tanaka, Org. Lett. 2016, 18, 2934.
temperature (conditions B) facilitates ligand exchange through
equilibration between intermediates A and E, and C and F via
acetone-coordinating rhodium species.[14]
In conclusion, we have established that an electron-deficient
CpE rhodium(III) complex catalyzes the oxidative [4+2]
annulation of substituted arenecarboxylic and acrylic acids with
alkynes under ambient conditions (at RT–40 °C, under air)
without using excess amounts of substrates to produce the
corresponding substituted isocoumarins and α-pyrones in high
yields. Minor modification of reaction conditions depending on
the coordination ability of alkynes realized the high efficiency.
[11] For recent examples of sterically and electronically tuned Cp ligands in
the rhodium(III)-catalyzed C–H functionalization, see: a) R. Zeng, J. Ye,
C. Fu, S. Ma, Adv. Synth. Catal. 2013, 355, 1963; b) T. Piou, T. Rovis,
J. Am. Chem. Soc. 2014, 136, 11292; c) M. D. Wodrich, B. Ye, J. F.
Gonthier, C. Corminboeuf, N. Cramer, Chem. Eur. J. 2014, 20, 15409;
d) J. M. Neely, T. Rovis, J. Am. Chem. Soc. 2014, 136, 2735; e) F.
Romanov-Michailidis, K. F. Sedillo, J. M. Neely, T. Rovis, J. Am. Chem.
Soc. 2015, 137, 8892; f) T. Piou, T. Rovis, Nature 2015, 527, 86.
[12] a) T. Opatz, D. Ferenc, Eur. J. Org. Chem. 2005, 121; b) S. J. Eade, R.
M. Adlington, A. R. Cowley, M. W. Walter, J. E. Baldwin, Org. Lett.
2005, 7, 3705.
Acknowledgements
[13] The observed DKIE values were larger than that of the RuII-catalyzed
annulation of 2a/2a-[D5] with 3n (DKIE value = 4.5). See ref 7d.
[14] a) K. Tanaka, R. Tanaka, G. Nishida, M. Hirano, Synlett 2008, 2017; b)
Y. Otake, R. Tanaka, K. Tanaka, Eur. J. Org. Chem. 2009, 2737.
This work was supported partly by ACT-C from JST (Japan),
Grants-in-Aid for Scientific Research (Nos. 26102004 and
25105714) from MEXT (Japan), and a Grant-in-Aid for Research
Activity Start-up (No. 15H06201) from JSPS (Japan). We are