2590
C. G. Evans et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2587–2590
Figure 4. Synthetic derivatives of spergualin are more stable than the natural product. (A) The stability of spergualin was tested by thin layer chromatography. The time
points were initiated immediately after dissolution in aqueous buffers at the indicated pH. (B) Stability of 7a under the same conditions. Results are the average of at least
independent triplicates and the error bars represent standard error of the mean. (C) Summary of the known hydrolysis products of 15-DSG (D) Table of the stability values for
spergualin, 15-DSG and compounds 7a–d. Also included are the relative anti-bacterial activities (+++MIC <10
ÀMIC >250 g/mL).
lg/mL; ++ MIC 10–50 lg/mL; +MIC 50–250 lg/mL;
l
6. Umeda, Y.; Moriguchi, M.; Kuroda, H.; Nakamura, T.; Fujii, A.; Iinuma, H.;
Takeuchi, T.; Umezawa, H. J. Antibiot. (Tokyo) 1987, 40, 1303.
7. Umeda, Y.; Moriguchi, M.; Kuroda, H.; Nakamura, T.; Iinuma, H.; Takeuchi, T.;
Umezawa, H. J. Antibiot. (Tokyo) 1985, 38, 886.
The next steps are to improve the in vivo metabolic stability and
better understand their pharmacologic activities.
8. Umeda, Y.; Moriguchi, M.; Ikai, K.; Kuroda, H.; Nakamura, T.; Fujii, A.; Takeuchi,
T.; Umezawa, H. J. Antibiot. (Tokyo) 1987, 40, 1316.
Acknowledgments
9. Kaufman, D. B.; Gores, P. F.; Kelley, S.; Grasela, D. M.; Nadler, S. G.; Ramos, E.
Transplant. Rev. 1996, 10, 160.
10. Lebreton, L.; Annat, J.; Derrepas, P.; Dutartre, P.; Renaut, P. J. Med. Chem. 1999,
42, 277.
11. Lebreton, L.; Jost, E.; Carboni, B.; Annat, J.; Vaultier, M.; Dutartre, P.; Renaut, P. J.
Med. Chem. 1999, 42, 4749.
12. Ohlman, S.; Zilg, H.; Schindel, F.; Lindholm, A. Transplant. Int. 1994, 7, 5.
13. Kondo, S.; Iwasawa, H.; Ikeda, D.; Umeda, Y.; Ikeda, Y.; Iinuma, H.; Umezawa, H.
J. Antibiot. (Tokyo) 1981, 34, 1625.
14. Bergeron, R. J.; McManus, J. S. J. Org. Chem. 1987, 52, 1700.
15. Durand, P.; Richard, P.; Renaut, P. J. Org. Chem. 1998, 63, 9723.
16. Durand, P.; Peralba, P.; Renaut, P. Tetrahedron 2001, 57, 2757.
17. Marcaccini, S.; Torroba, T. Nat. Protoc. 2007, 2, 632.
18. Wang, W.; Domling, A. J. Comb. Chem. 2009, 11, 403.
19. Lew, A.; Krutzik, P. O.; Hart, M. E.; Chamberlin, A. R. J. Comb. Chem. 2002, 4, 95.
20. Ugi, I.; Heck, S. Comb. Chem. High Throughput Screening 2001, 4, 1.
21. Feichtinger, K.; Zapf, C.; Sings, H. L.; Goodman, M. J. Org. Chem. 1998, 63, 3804.
22. Xu, P. Z. T.; Wang, W.; Zou, X.; Zhang, X.; Fu, Y. Synthesis 2003, 1171.
23. More, J. D.; Finney, N. S. Org. Lett. 2002, 4, 3001.
C.G.E. was supported by a predoctoral fellowship from the Cel-
lular Biotechnology Training Grant (GM008353). M.C.S. was sup-
ported by
a predoctoral fellowship from the Biogerontology
Training Grant (AG000114). This work was additionally supported
by grants from the NIH (NS059690) and NSF (MCB-0844512).
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Takeuchi, T.; Iinuma, H.; Kunimoto, S.; Masuda, T.; Ishizuka, M.; Takeuchi, M.;
Hamada, M.; Naganawa, H.; Kondo, S.; Umezawa, H. J. Antibiot. (Tokyo) 1981,
34, 1619.
24. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J.
Org. Chem. 1996, 61, 3849.
2. Umezawa, H.; Ishizuka, M.; Takeuchi, T.; Abe, F.; Nemoto, K.; Shibuya, K.;
Nakamura, T. J. Antibiot. (Tokyo) 1985, 38, 283.
25. Carpino, L. A.; Sadat-Aalaee, D.; Beyermann, M. J. Org. Chem. 1990, 55,
1673.
3. Thomas, F. T.; Tepper, M. A.; Thomas, J. M.; Haisch, C. E. Ann. N.Y. Acad. Sci. 1993,
685, 175.
26. Bull, S. D.; Davies, S. G.; Fenton, G.; Mulvaney, A. W.; Prasad, R. S.; Smith, A. D. J.
Chem. Soc., Perkin Trans. I 2000, 2000, 3765.
4. Evans, C. G.; Chang, L.; Gestwicki, J. E. J. Med. Chem. 2010, 53, 4585.
5. Umezawa, H.; Kondo, S.; Iinuma, H.; Kunimoto, S.; Ikeda, Y.; Iwasawa, H.; Ikeda,
D.; Takeuchi, T. J. Antibiot. (Tokyo) 1981, 34, 1622.
27. Nishizawa, R.; Takei, Y.; Yoshida, M.; Tomiyoshi, T.; Saino, T.; Nishikawa, K.;
Nemoto, K.; Takahashi, K.; Fujii, A.; Nakamura, T., et al J. Antibiot. (Tokyo) 1988,
41, 1629.