Journal of the American Chemical Society
Article
(7) Guan, Z.; Cotts, P. M.; McCord, E. F.; McLain, S. J. Science 1999,
283, 2059.
(8) Cotts, P. M.; Guan, Z.; McCord, E.; McLain, S. Macromolecules
2000, 33, 6945.
SUMMARY AND CONCLUSION
■
Low-molecular-weight products with a hyperbranched micro-
structure are accessible by oligomerization of ethylene with
Ni(II)−salicylaldiminato catalysts. A key to this efficient
formation of highly branched oligomers is an N-terphenyl
motif with remote alkyl substituents. The oligomerization to
hyperbranched products proceeds with high rates under
moderate conditions of pressure and temperature (≤20 atm,
50 °C). An in situ prepared catalyst eliminates the necessity of
tedious preparation of isolated Ni−dimethyl precursors and
thereby resolves an essential limitation of this chemistry.
Functionalization of the unsaturated end group of the oligomer
chains via cross metathesis or epoxidation, respectively, gives
access to monofunctional highly branched ethylene oligomers
in essentially quantitative yield. Notably, also in cross
metathesis molecular weights are essentially retained and very
little material is lost. Overall, all reactions involved are
straightforward and readily scalable, as demonstrated by the
preparation of 50 g batches. Due to their high reactivity, the
primary carboxy or alcohol or disubstituted epoxide groups
generated lend themselves to further functionalization. To our
knowledge, this is the first report of such hyperbranched
monofunctional materials.
(9) Gates, D. P.; Svejda, S. A.; Onate, E.; Killian, C. M.; Johnson, L.
̃
K.; White, P. S.; Brookhart, M. Macromolecules 2000, 33, 2320.
(10) Deng, L.; Woo, T. K.; Cavallo, L.; Margl, P. M.; Ziegler, T. J.
Am. Chem. Soc. 1997, 119, 6177.
(11) Xiang, P.; Ye, Z.; Subramanian, R. Polymer 2011, 52, 5027.
(12) (a) Keim, W. Chem. Ing. Tech. 1984, 56, 850. (b) Pietsch, J.;
Braunstein, P.; Chauvin, Y. New J. Chem. 1998, 22, 467. (c) Vogt, D.:
Organic-organic biphasic catalysis. In Multiphase Homogeneous
Catalysis; Cornils, B., Herrmann, W. A., Horvath, I. T., Leitner, W.,
Mecking, S., Olivier-Bourbigou, H., Vogt, D., Eds.; Wiley-VCH:
Weinheim, Germany, 2005; pp 330−335. (d) Keim, W. Angew. Chem.
Int. Ed. 2013, 52, 12492.
(13) (a) Killian, C. M.; Johnson, L. K.; Brookhart, M. Organometallics
1997, 16, 2005. (b) Svejda, S. A.; Brookhart, M. Organometallics 1999,
18, 65.
(14) (a) Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs, R.
H.; Bansleben, D. A.; Day, M. W. Organometallics 1998, 17, 3149.
(b) Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.;
Grubbs, R. H.; Bansleben, D. A. Science 2000, 287, 460. (c) Johnson,
L. K.; Bennett, A. M. A.; Ittel, S. D.; Wang, L.; Parthasarathy, A.;
Hauptman, E.; Simpson, R. D.; Feldman, J.; Coughlin, E. B. (DuPont)
WO98/30609, 1998.
(15) (a) Song, D.-P.; Wang, Y.-X.; Mu, H.-L.; Li, B.-X.; Li, Y.-S.
Organometallics 2011, 30, 925−934. (b) Radlauer, M. R.; Buckley, A.
K.; Henling, L. M.; Agapie, T. J. Am. Chem. Soc. 2013, 135, 3784−
3787.
ASSOCIATED CONTENT
* Supporting Information
Text, tables, figures, and CIF files giving complete experimental
procedures and analytical data, molecular weight and branching
degree calculations, and crystallographic data/processing
parameters. This material is available free of charge via the
■
S
(16) Zuideveld, M. A.; Wehrmann, P.; Rohr, C.; Mecking, S. Angew.
̈
Chem., Int. Ed. 2004, 43, 869.
(17) Osichow, A.; Rabe, C.; Vogtt, K.; Narayanan, T.; Harnau, L.;
Drechsler, M.; Ballauff, M.; Mecking, S. J. Am. Chem. Soc. 2013, 135,
11645.
(18) (a) Gottker-Schnetmann, I.; Wehrmann, P.; Rohr, C.; Mecking,
̈
̈
AUTHOR INFORMATION
Corresponding Author
■
S. Organometallics 2007, 26, 2348. (b) Bastero, A.; Gottker-
̈
Schnetmann, I.; Rohr, C.; Mecking, S. Adv. Synth. Catal. 2007, 349,
̈
2307. (c) Weberski, M. P.; Chen, C.; Delferro, M.; Zuccaccia, C.;
Macchioni, A.; Marks, T. J. Organometallics 2012, 31, 3773−3789.
Notes
(d) Osichow, A.; Gottker-Schnetmann, I.; Mecking, S. Organometallics
̈
The authors declare no competing financial interest.
2013, 32, 5239−5242. (e) Soshnikov, I. E.; Semikolenova, N. V.;
̈
Zakharov, V. A.; Moller, H. M.; Olscher, F.; Osichow, A.; Gottker-
̈
̈
ACKNOWLEDGMENTS
We thank Jurgen Omeis, Michael Bessel, and Dominika Bernert
for fruitful discussions. Financial support by Byk is gratefully
■
Schnetmann, I.; Mecking, S.; Talsi, E. P.; Bryliakov, K. P. Chem. Eur. J.
2013, 19, 11409−11417.
̈
(19) Jenkins, J. C.; Brookhart, M. J. Am. Chem. Soc. 2004, 126, 5827.
(20) (a) Daugulis, O.; Brookhart, M. Organometallics 2002, 21, 5926.
(b) Desjardins, S. Y.; Way, A. A.; Murray, M. C.; Adirim, D.; Baird, M.
C. Organometallics 1998, 17, 2382.
(21) (a) Randall, J. C. J. Macromol. Sci., Rev. Macromol. Chem. Phys.
1989, C29, 201. (b) Galland, G. B.; de Souza, R. F.; Mauler, R. S.;
Nunes, F. F. Macromolecules 1999, 32, 1620.
(22) A possible route of catalyst deactivation involves reductive
coupling of a growing Ni−alkyl species with an Ni−H or another Ni−
alkyl; cf.: Berkefeld, A.; Mecking, S. J. Am. Chem. Soc. 2009, 131,
1565−1574. This would result in chains with two saturated end
groups. Given that in the oligomerizations studied here ca. 100
oligomer chains are formed per Ni(II) center, any such deactivation
reaction would be negligible in terms of oligomer microstructure and
analysis.
acknowledged.
REFERENCES
■
(1) Behr, A.: Ziegler processes. In Ullmann’s Encyclopedia of Industrial
Chemistry; Wiley-VCH: Weinheim, Germany, 2000.
(2) Wolfmeier, U.; Schmidt, H.; Heinrichs, F.-L.; Michalczyk, G.;
Payer, W.; Dietsche, W.; Boehlke, K.; Hohner, G.; Wildgruber, J.:
Waxes. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH:
Weinheim, Germany, 2000.
(3) Amin, S. B.; Marks, T. J. Angew. Chem., Int. Ed. 2008, 47, 2006.
(4) (a) Britovsek, G. J. P.; Cohen, S. A.; Gibson, V. C.; Maddox, P. J.;
van Meurs, M. Angew. Chem., Int. Ed. 2002, 41, 489. (b) Arriola, D. J.;
Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T. Science
2006, 312, 714. (c) Mazzolini, J.; Espinosa, E.; D’Agosto, F.; Boisson,
C. Polym. Chem. 2010, 1, 793. (d) Gibson, V. C. Science 2006, 312,
703.
(23) (a) Pugh, R. I.; Drent, E.; Pringle, P. G. Chem. Commun. 2001,
1476. (b) Jimenez Rodriguez, C.; Foster, D. F.; Eastham, G. R.; Cole-
Hamilton, D. J. Chem. Commun. 2004, 1720.
(24) Stempfle, F.; Quinzler, D.; Heckler, I.; Mecking, S. Macro-
molecules 2011, 44, 4159.
(5) (a) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.
1995, 117, 6414. (b) Rose, J. M.; Cherian, A. E.; Coates, G. W. J. Am.
Chem. Soc. 2006, 128, 4186.
(25) Decreasing the amount of ethanol resulted in decreased degrees
of functionalization. Also, higher dilution or utilization of other solvent
mixtures such as pentane/methanol and toluene/ethanol did not
enhance conversion.
(6) (a) Hyperbranched Polymers Eds. Yan, D.; Gao, C.; Frey, H.
Wiley: Hoboken, 2011. (b) Voit, B. I.; Lederer, A. Chem. Rev. 2009,
109, 5924−5973. (c) Calderon, M.; Quadir, M. A.; Sharma, S. K.;
Haag, R. Adv. Mater. 2010, 22, 190−218.
2084
dx.doi.org/10.1021/ja411945n | J. Am. Chem. Soc. 2014, 136, 2078−2085