1936
R. Ottanà et al. / Bioorg. Med. Chem. 17 (2009) 1928–1937
CH); 7.94 (m, 2H, arom); 9.80 (br s, 1H, OH); 13C NMR (DMSO-d6): d
46.1 (NCH2); 115.9, 118.0, 121.5, 121.9, 125.5, 128.1, 130.0, 130.1,
130.9, 131.6 (CH arom and CH methylidene); 121.2 (5-C); 130.5,
134.9, 141.4, 148.0, 158.3 (Cq arom); 150.1 (C@N); 166.3, 167.5
(C@O). Anal. Calcd for C24H18N2O4S: C, 66.96; H, 4.21; N, 6.51.
Found: C, 70.15; H, 4.13; N, 6.41.
S-transferase (GST) in the pGEX-2T bacterial expression vector. En-
zyme expression and purification were achieved in the Escherichia
coli TB1 strain. Briefly, the recombinant fusion proteins were puri-
fied from bacterial lysate using a single step affinity chromatogra-
phy on glutathione-Sepharose. The solution contained purified
fusion proteins were treated with thrombin for 3 h at 37 °C. Then
the enzymes were purified from GST and thrombin by gel filtration
on Superdex G-75. The purity of proteins preparations were ana-
lyzed by SDS–polyacrylamide gel electrophoresis according to
Laemmli.45
5.1.11. 4-[5-(4-Hydroxybenzylidene)-4-oxo-2-
phenyliminothiazolidin-3-ylmethyl]benzoic acid (4h)
Yield 62%; mp 260–262 °C; 1H NMR (CDCl3): d 5.08 (s, 2H,
NCH2); 6.75 (m, 2H, arom); 6.85 (m, 2H, arom); 7.06–7.23 (m,
5H, arom); 7.43 (m, 2H, arom); 7.58 (s, 1H, CH); 7.89 (m, 2H,
arom); 13C NMR (DMSO-d6): d 46.1 (NCH2); 116.8, 121.4, 125.3,
128.0, 129.9, 130.0, 131.3, 132.7 (CH arom and CH methylidene);
124.6, 130.5, 141.5, 148.1, 160.1 (Cq arom); 150.2 (C@N); 166.4,
167.4 (C@O). Anal. Calcd for C24H18N2O4S: C, 66.96; H, 4.21; N,
6.51. Found: C, 70.08; H, 4.33; N, 6.37.
5.3.1. Phosphatase assay and inhibition experiments
Phosphatase assay was carried out at 37 °C using p-nitrophenyl-
phosphate as substrate; the final volume was 1 ml. The assay buf-
fer (pH 7.0) contained 0.075 M of b,b-dimethylglutarate buffer,
1 mM EDTA and 5 mM dithiothreitol. The reactions were initiated
by addition of aliquots of the enzyme preparations and stopped
at appropriate times by adding 4 ml of 1 M KOH. The released p-
nitrophenolate ion was determined by reading the absorbance at
5.1.12. 4-[5-(3-Hydroxy-4-methoxybenzylidene)-4-oxo-2-
phenyliminothiazolidin-3-ylmethyl]benzoic acid (4i)
400 nm (e
= 18,000 MÀ1 cmÀ1). The main kinetic parameters (Km
Yield 48%; mp 213–216 °C; 1H NMR (CDCl3): d 3.93 (s, 3H, OCH3);
5.17 (s, 2H, NCH2); 6.94–7.36 (m, 8H, arom); 7.56 (m, 2H, arom); 7.65
(s, 1H, CH);7.97(m, 2H, arom);9.81(s, 1H, OH);13C NMR(DMSO-d6):
d 46.1 (NCH2); 56.2 (OCH3); 113.0, 116.0, 121.5, 124.0, 125.4, 128.1,
130.0, 130.1, 131.9 (CH arom and CH methylidene); 126.4 (5-C);
117.9, 130.7, 135.7, 141.4, 147.4, 148.2 (Cq arom); 150.4 (C@N);
166.5, 167.6 (C@O). Anal. Calcd for C25H20N2O5S: C, 65.2; H, 4.38;
N, 6.08. Found: C, 65.35; H, 4.19; N, 5.97.
and Vmax) were determined by measuring the initial rates at differ-
ent substrate concentrations. Experimental data were analysed
using the Michaelis equation and a non-linear fitting program (Fig-
Sys). Inhibition constants were determined measuring initial
hydrolysis rates at differing substrate and inhibitor concentrations.
The apparent Km values measured at the various inhibitor concen-
trations were plotted against concentration of the inhibitor to cal-
culate the Ki values. All initial rate measurements were carried out
in triplicate. For each inhibitor, IC50 was determined by measuring
the initial hydrolysis rate under fixed p-nitrophenylphosphate con-
centration, equal to the Km value of the considered PTP. Data were
fitted to the following equation using the FigSys program: Vi/
V0 = IC50/(IC50 + [I]), where Vi is the reaction rate when the inhibitor
concentration is [I], V0 is the reaction rate with no inhibitor, and
IC50 = Ki + Ki[S]/Km. Therefore, when the substrate concentration
[S] is equal to Km, IC50 = 2Ki.
5.1.13. 4-[5-(4-Hydroxy-3-methoxybenzylidene)-4-oxo-2-
phenyliminothiazolidin-3-ylmethyl]benzoic acid (4j)
Yield 43%; mp 214–218 °C; 1H NMR (CDCl3): d 3.89 (s, 3H,
OCH3); 5.26 (s, 2H, NCH2); 6.93–7.39 (m, 8H, arom); 7.63 (m, 2H,
arom); 7.73 (s, 1H, CH); 8.06 (m, 2H, arom); 13C NMR (DMSO-d6):
d 42.5 (NCH2); 56.2 (OCH3); 116.0, 117.2, 121.6, 123.7, 125.6,
127.6, 129.0, 130.1, 132.3 (CH arom and CH methylidene); 124.7
(5-C); 132.1, 135.5, 139.2, 148.3, 161.3, 161.6 (Cq arom); 148.6
(C@N); 166.5, 168.8 (C=O). Anal. Calcd for C25H20N2O5S: C, 65.2;
H, 4.38; N, 6.08. Found: C, 65.28; H, 4.44; N, 5.89.
Acknowledgements
Work
supported
in
part
by
FIRB
2003-project
5.1.14. 4-[5-(3-Carboxy-4-hydroxybenzylidene)-4-oxo-2-
phenyliminothiazolidin-3-ylmethyl]benzoic acid (4k)
RBNE03FMCJ_007, by ‘Ente Cassa di Risparmio di Firenze’ and by
University of Messina (PRA-2005).
Yield 20%; mp 280–284 °C; 1H NMR (DMSO-d6): d 5.16 (s, 2H,
NCH2); 6.97 (m, 3H, arom); 7.21 (m, 1H, arom); 7.38–7.65 (m,
5H, arom); 7.77 (s, 1H, CH); 7.95 (m, 3H arom); 13C NMR (DMSO-
d6): d 46.2 (NCH2); 118.8, 121.4, 125.4, 128.1, 129.9, 130.1, 131.0,
132.8, 136.8, (CH arom and CH methylidene); 115.4, 118.4, 124.3,
130.5, 141.4, 148.0, 163.3 (Cq arom + 5-C); 150.0 (C@N); 166.4,
167.4, 171.2 (C@O). Anal. Calcd for C25H18N2O6S: C, 63.28; H,
3.82; N, 5.9. Found: C, 63.12; H, 4.00; N, 5.77.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Zhang, Z. Y. Curr. Opin. Chem. Biol. 2001, 5, 416.
2. Zhang, Z. Y.; Zhou, B.; Xie, L. Pharmacol. Ther. 2002, 93, 307.
3. van Huijsduijnen, R. H.; Bombrun, A.; Swinnen, D. Drugs Discovery Today 2002,
7, 1013.
5.2. Molecular modeling
4. Tabernero, L.; Aricescu, A. R.; Jones, E. Y.; Szedlacsek, S. E. FEBS J. 2008, 275, 867.
5. Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik,
A.; Hunter, T.; Dixon, J.; Mustelin, T. Cell 2004, 117, 699.
All protein alignments, protein and ligand preparations, and
docking studies were performed using the Schrödinger Suite
2007, including Maestro 8.0, Glide 4.5, and Prime 1.641 on a PC
equipped with a 2.13 GHz Core 2 Duo processor and 3 GB of
RAM, running Fedora Core 8 Linux.
Pharmacophore feature detection was performed with Ligand-
Scout v2.02,44 which was also used to create the graphics in Figures
3 and 4.
6. Hendriks, W. J. A.; Elson, A.; Harroch, S.; Stoker, A. W. FEBS J. 2008, 275, 816.
7. Johnson, T. O.; Ermolieff, J.; Jirousek, M. R. Nat. Rev. Drug Disc. 2002, 1, 696.
8. (a) Cheng, A.; Uetani, N.; Simoncic, P. D.; Chaubey, V. P.; Lee-Loy, A.; McGlade, J.;
Kennedy, B. P.; Tremblay, M. L. Dev. Cell 2002, 2, 497; (b) Zabolotny, J. M.; Bence-
Hanulec, K. K.; Stricker-Krongrad, A.; Haj, F.; Wang, Y.; Minokoshi, Y.; Kim, Y. B.;
Elmquist, J. K.; Tartaglia, L. A.; Kahn, B. B.; Neel, B. G. Dev. Cell 2002, 2, 489.
9. Montalibet, J.; Kennedy, B. P. Drug Discov. Today Ther. Strategies 2005, 2, 129.
10. Koren, S.; Fantus, I. G. Best Pract. Res. Cl. En. Metab. 2007, 21, 621.
11. Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A. L.;
Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.; Ramachandran, C.;
Gresser, M. J.; Tremblay, M. L.; Kennedy, B. P. Science 1999, 283, 1544.
12. Klaman, L. D.; Boss, O.; Peroni, O. D.; Kim, J. K.; Martino, J. L.; Zabolotny, J. M.;
Moghal, N.; Lubkin, M.; Kim, Y. B.; Sharpe, A. H.; Stricker-Krongrad, A.;
Shulman, G. I.; Neel, B. G.; Kahn, B. B. Mol. Cell. Biol. 2000, 20, 5479.
5.3. Enzyme section
The complete coding sequences of IF1, IF2, Ltp1 LMW-PTPs and
PTP1B were cloned in frame with the sequence of the glutathione