Dislocation Plasticity in Thin Metal Films
14. R.-M. Keller, S.P. Baker, and E. Arzt, J. Mater.
35. P. Chaudhari, Philos. Mag. A 39 (1979) p. 507.
36. C.V. Thompson, J. Mater. Res. 8 (1993) p. 237.
37. S.P. Baker, A. Kretschmann, and E. Arzt,
Acta Mater. 49 (2001) p. 2145.
38. M. Hommel and O. Kraft, Acta Mater. 49
(2001) p. 3935.
fairly extensive simulation studies and will
rely on insight and judgment in problem
definition. For the latter, a vivid exchange
between experiments—including mechani-
cal testing as well as in situ electron
microscopy—and theory is indispensable.
Owing to the constraints on dislocation
motion, dislocation plasticity is strongly
reduced as a stress-relaxation mechanism.
Thus, very high internal stresses may be
present in small-scale devices and endanger
operation. Continuum theories of plasticity
that incorporate a physical or microstruc-
tural length scale may turn out to be very
helpful if they can be shown to have a pre-
dictive capability. Such a theory may be
based on strain-gradient plasticity, which
shows great promise, but needs to prove
applicability to deformation in thin metal
films. If such theories are guided by ex-
periments and able to capture the essence
of the response of small structures, they
will be very useful in device simulation
codes for microelectronics, MEMS, and
other applications.
Res. 13 (1998) p. 1307.
15. R.-M. Keller, S.P. Baker, and E. Arzt, Acta
Mater. 47 (1999) p. 415.
16. O. Kraft and W.D. Nix, in Materials Reliability
in Microelectronics VIII, edited by J.C. Bravman,
T.N. Marieb, J.R. Lloyd, and M.A. Korhonen
(Mater. Res. Soc. Symp. Proc. 516, Warrendale,
PA, 1998) p. 201.
17. M.J. Kobrinsky and C.V. Thompson, Appl.
Phys. Lett. 73 (1998) p. 2429.
18. M.J. Kobrinsky and C.V. Thompson, Acta
Mater. 48 (2000) p. 625.
19. D. Weiss, H. Gao, and E. Arzt, Acta Mater. 49
(2001) p. 2395.
20. M. Ronay, Philos. Mag. A 40 (1979) p. 145.
21. Y.-L. Shen, S. Suresh, M.Y. He, A. Bagchi,
O. Kienzle, M. Rühle, and A.G. Evans, J. Mater.
Res. 13 (1998) p. 1928.
22. J.A. Ruud, D. Josell, F. Spaepen, and A.L.
Greer, J. Mater. Res. 8 (1993) p. 112.
23. D.T. Read and J.W. Dally, J. Mater. Res. 8
(1993) p. 1542.
24. G. Cornella, R.P. Vinci, R. Suryanarayanan
Iyer, R.H. Dauskardt, and J.C. Bravman, in
Microelectromechanical Structures for Materials Re-
search, edited by S. Brown, J. Gilbert, H. Guckel,
R. Howe, G. Johnson, P. Krulevitch, and C.
Muhlstein (Mater. Res. Soc. Symp. Proc. 518,
Warrendale, PA, 1998) p. 81.
25. D.T. Read, Int. J. Fatigue 20 (1998) p. 203.
26. D. Josell, D. van Heerden, D. Read, J.
Bonevich, and D. Shechtman, J. Mater. Res. 13
(1998) p. 2902.
27. H. Huang and F. Spaepen, Acta Mater. 48
(2000) p. 3261.
28. M.D. Thouless, J. Gupta, and J.M.E. Harper,
J. Mater. Res. 8 (1993) p. 1845.
29. M. Hommel, O. Kraft, and E. Arzt, J. Mater.
Res. 14 (1999) p. 2373.
39. N.A. Fleck and J.W. Hutchinson, Adv. Appl.
Mech. 33 (1997) p. 295.
40. A.H. Cottrell, The Mechanical Properties of
Matter (John Wiley & Sons, New York, 1964).
41. M.F. Ashby, Philos. Mag. 21 (1970) p. 399.
42. P. Müllner and E. Arzt, in Thin Films:
Stresses and Mechanical Properties VII, edited by
R.C. Cammarata, M. Nastasi, E.P. Busso, and
W.C. Oliver (Mater. Res. Soc. Symp. Proc. 505,
Warrendale, PA, 1998) p. 149.
43. J.A. Hurtado and L.B. Freund, J. Elasticity 52
(1999) p. 167.
44. E. Arzt, G. Dehm, P. Gumbsch, O. Kraft,
and D. Weiss, Prog. Mater. Sci. 46 (2001) p. 283.
45. J.R. Willis, S. Jain, and R. Bullough, Appl.
Phys. Lett. 59 (1991) p. 920.
46. L.B. Freund, Advances in Applied Mechanics,
Vol. 30 (Academic Press, New York, 1993).
47. W.D. Nix, Scripta Mater. 39 (1998) p. 545.
48. K.W. Schwarz, J. Appl. Phys. 85 (1999) p. 108.
49. K.W. Schwarz, J. Appl. Phys. 85 (1999) p. 120.
50. C.F. Robertson and M.C. Fivel, J. Mater. Res.
14 (1999) p. 2251.
51. R. Phillips, D. Rodney, V. Shenory, E. Tadmor,
and M. Ortiz, Model. Simul. Mater. Sci. Eng. 7
(1999) p. 769.
52. C.L. Kelchner, S.J. Plimpton, and J.C.
Hamilton, Phys. Rev. B 58 (1998) p. 11085.
53. R. Miller, E.B. Tadmor, R. Phillips, and M.
Ortiz, Model. Simul. Mater. Sci. Eng. 6 (1998) p. 607.
54. P. Pant, K.W. Schwarz, and S.P. Baker, in
Dislocations and Deformation Mechanisms in Thin
Films and Small Structures, edited by O. Kraft,
K.W. Schwarz, S.P. Baker, L.B. Freund, and R. Hull
(Mater. Res. Soc. Symp. Proc. 673, Warrendale,
PA, 2001) p. P2.2.1.
55. L. Nicola, E. van der Giessen, and A.
Needleman, Mater. Sci. Eng. A 309–310 (2001)
p. 274.
56. J.Y. Shu, N.A. Fleck, E. van der Giessen, and
A. Needleman, J. Mech. Phys. Solids 49 (2001)
p. 1361.
57. B. von Blanckenhagen, P. Gumbsch, and E.
Arzt, Model. Simul. Mater. Sci. Eng. 9 (2001)
p. 157.
58. H.J. Frost and M.F. Ashby, Deformation-
Mechanism Maps: The Plasticity and Creep of Metals
and Ceramics (Pergamon Press, New York, 1982).
59. B. von Blanckenhagen (unpublished results).
ꢀ
References
1. W.D. Nix, Metall. Trans. A 20A (1989) p. 2217.
2. F.R. Brotzen, Int. Mat. Rev. 39 (1994) p. 24.
3. O. Kraft and C.A. Volkert, Adv. Eng. Mater. 3
(2001) p. 99.
4. P.A. Flinn, D.S. Gardner, and W.D. Nix, IEEE
Trans. Electron Devices ED-34 (1987) p. 689.
5. P.A. Flinn and C. Chiang, J. Appl. Phys. 67
(1990) p. 2927.
6. P.A. Flinn, J. Mater. Res. 6 (1991) p. 1498.
7. R. Venkatraman and J.C. Bravman, J. Mater.
Res. 7 (1992) p. 2040.
8. C.A. Volkert, C.F. Alofs, and J.R. Liefting,
J. Mater. Res. 9 (1994) p. 1147.
9. R.P. Vinci, E.M. Zielinski, and J.C. Bravman,
Thin Solid Films 262 (1995) p. 142.
30. E.A. Stach, U. Dahmen, and W.D. Nix, in
Recent Developments in Oxide and Metal Epitaxy—
Theory and Experiment, edited by M. Yeadon,
S. Chiang, R.F.C. Farrow, J.W. Evans, and O.
Auciello (Mater. Res. Soc. Symp. Proc. 619,
Warrendale, PA, 2000) p. 27.
31. G. Dehm, B.J. Inkson, T.J. Balk, T. Wagner,
and E. Arzt, in Dislocations and Deformation
Mechanisms in Thin Films and Small Structures,
edited by O. Kraft, K.W. Schwarz, S.P. Baker,
L.B. Freund, and R. Hull (Mater. Res. Soc. Symp.
Proc. 673, Warrendale, PA, 2001) p. P2.6.1.
32. G. Dehm, D. Weiss, and E. Arzt, Mater. Sci.
Eng., A 309–310 (2001) p. 468.
10. S. Bader, P.A. Flinn, E. Arzt, and W.D. Nix,
J. Mater. Res. 9 (1994) p. 318.
11. S. Bader, E.M. Kalaugher, and E. Arzt, in
Thin Films: Stresses and Mechanical Properties V,
edited by S.P. Baker, C.A. Ross, P.H. Townsend,
C.A. Volkert, and P. Børgesen (Mater. Res. Soc.
Symp. Proc. 356, Pittsburgh, PA, 1995) p. 435.
12. P.R. Besser, S. Brennan, and J.C. Bravman,
J. Mater. Res. 9 (1994) p. 13.
13. M.A. Moske, P.S. Ho, D.J. Mikalsen, J.J.
Cuomo, and R. Rosenberg, J. Appl. Phys. 74
(1993) p. 1716.
33. V. Weihnacht and W. Brückner, Acta Mater.
49 (2001) p. 2365.
34. L.B. Freund, J. Appl. Mech. 43 (1987) p. 553.
™
™
one-stop source for products, government organizations, journals, Web
addresses for materials-related sources, and other data relevant to researchers.”
The Materials Gateway
The Materials Gateway
Searching for Scientific Publications Made Easy
R&D Magazine, June 2000, E21
MRS BULLETIN/JANUARY 2002
37