28.1 [–CH(CH3)2], 25.6 [–CH(CH3)2], 22.9 [–CH(CH3)2],
-10.2 [–Al(CH3)2].
22 Hz, Ar-C), 109.5 (d,2JC–F = 22 Hz Ar-C), 29.2 [–CH(CH3)2],
25.7 [–CH(CH3)2], 22.8 [–CH(CH3)2], -10.8 [–Al(CH3)2].
[{PhC(N-2,6-iPr2C6H3)(N-2-MeC6H4)}AlMe2] (4e). The pro-
cedure was similar to that of complex 4a, except that proligand 3e
(1.6 g, 4.3 mmol) and a solution of trimethyl aluminium (2.6 mL,
4.6 mmol, 2 M in toluene) were used. Crystallization of the crude
product from n-hexane afforded off-white crystals of 4e (0.78 g,
42%) (Found: C, 78.39; H, 8.34; N, 6.4◦1. Calc. for C28H35AlN2: C,
78.84; H, 8.27; N, 6.57%); mp 81–82 C; dH (500 MHz, CDCl3,
25 ◦C) 7.18 (t, 1H, 3J = 7.5 Hz, Ar-H), 7.14 (d, 1H, 3J = 7.5 Hz,
Ar-H), 7.10 (t, 1H, 3J = 7.5 Hz, Ar-H), 7.06 (t, 2H, 3J = 7.8 Hz,
Ar-H), 7.02 (d, 2H, 3J = 7.5 Hz, Ar-H), 6.96 (d, 2H, 3J = 7.8 Hz,
[{PhC(N-2,6-iPr2C6H3)(N-4-FC6H4)}AlMe2] (4h). The pro-
cedure was similar to that of complex 4a, except that the proligand
3h (1.14 g, 3.05 mmol) and a solution of trimethyl aluminium
(1.9 mL, 3.8 mmol, 2 M in toluene) were used. Crystallization
of the crude product from n-hexane afforded colorless crystals
(0.43 g, 33%) (Found: C, 75.30; H, 7.41; N, 6.76. Ca◦lc. for
C27H32AlFN2: C, 75.32; H, 7.49; N, 6.51%); mp 112–114 C; dH
(500 MHz, CDCl3, 25 ◦C) 7.26 (t, 1H, 3J = 8.0 Hz, Ar–H), 7.14 (t,
2H, 3J = 8.0 Hz, Ar-H), 7.09 (t, 1H, 3J = 8.2 Hz, Ar-H), 7.02 (t,
4H, 3J = 8.4 Hz, Ar-H), 6.82 (t, 2H, 3J = 8.4 Hz, Ar-H), 6.67 (m,
2H, Ar-H), 3.22 [septet, 2H, 3J = 6.8 Hz, –CH(CH3)2], 1.16 [d, 6H,
3J = 6.8 Hz, –CH(CH3)2], 0.90 [d, 6H, 3J = 6.8 Hz, –CH(CH3)2],
3
4
Ar–H), 6.90 (m, 2H, Ar–H), 6.55 (dd, 1H, J = 7.5 Hz, J =
1.5 Hz, Ar-H), 3.26 [septet, 2H, 3J = 6.8 Hz, –CH(CH3)2], 2.33 (s,
3H, Ar–CH3), 1.16 [d, 6H, 3J = 6.8 Hz, –CH(CH3)2], 0.86 [d, 6H,
-0.51 [s, 6H, –Al(CH3)2]; dC (100 MHz, CDCl3, 25 ◦C) 171.4
3J = 6.8 Hz, –CH(CH3)2], -0.52 [s, 6H, –Al(CH3)2]; dC (125 MHz,
(C N), 158.9 (Ar-C, JC–F = 240 Hz), 143.8 (Ar-C), 139.8 (Ar-
1
=
◦
=
CDCl3, 25 C) 172.0 (C N), 143.7 (Ar-C), 142.8 (Ar-C), 137.6
C), 139.8 (Ar-C), 137.2 (Ar-C), 130.6 (Ar-C), 129.8 (Ar-C), 128.5
(Ar-C), 128.2 (Ar-C), 125.8 (Ar-C), 124.6 (Ar-C), 124.5 (Ar-C),
123.5 (Ar-C), 115.5 (Ar-C, 2JC–F = 20 Hz), 28.2 [–CH(CH3)2], 25.7
[–CH(CH3)2], 22.8 [–CH(CH3)2], -10.8 [–Al(CH3)2].
(Ar-C), 131.9 (Ar-C), 130.5 (Ar-C), 130.4 (Ar-C), 129.9 (Ar-C),
129.1 (Ar-C), 127.9 (Ar-C), 126.1 (Ar-C), 125.6 (Ar-C), 125.5 (Ar-
C), 123.6 (Ar-C), 123.5 (Ar-C), 28.2 [–CH(CH3)2], 25.7 (Ar-CH3),
22.8 [–CH(CH3)2], 19.2 [–CH(CH3)2], -10.3 [–Al(CH3)2].
[{PhC(N-2,6-iPr2C6H3)(N-4-ClC6H4)}AlMe2] (4i). The pro-
cedure was similar to that of complex 4a, except that the proligand
3i (1.10 g, 2.81 mmol) and a solution of trimethyl aluminium
(1.8 mL, 3.6 mmol, 2 M in toluene) were used. Crystallization
of the crude product from n-hexane afforded colorless crystals
(0.73 g, 47%) (Found: C, 72.75; H, 7.43; N, 6.22. Ca◦lc. for
C27H32AlClN2: C, 72.55; H, 7.22; N, 6.27%); mp 104–105 C; dH
(500 MHz, CDCl3, 25 ◦C) 7.27 (t, 1H, 3J = 7.4 Hz, Ar-H), 7.15 (t,
2H, 3J = 8.0 Hz, Ar-H), 7.09 (dd, 1H, 3J = 8.5 Hz, 3J = 7.0 Hz,
Ar-H), 7.07–7.03 (m, 4H, Ar-H), 7.01 (d, 2H, 3J = 7.5 Hz, Ar–H),
[{PhC(N-2,6-iPr2C6H3)(N-Ph)}AlMe2] (4f). The procedure
was similar to that of complex 4a, except that proligand 3f
(1.0 g, 2.8 mmol) and a solution of trimethyl aluminium (1.7 mL,
3.3 mmol, 2 M in toluene) were used. Crystallization of the crude
product from n-hexane afforded light yellow crystals (0.78 g, 42%)
(Found: C, 78.55; H, 8.10; N, 6.74. Calc. for C27H33AlN2: C, 78.61;
H, 8.06; N, 6.79%); mp 112 ◦C; dH (500 MHz, CDCl3, 25 ◦C) 7.24
3
(t, 1H, J = 7.5 Hz, Ar-H), 7.15–7.08 (m, 5H, Ar-H), 7.05 (d,
2H, 3J = 8.0 Hz, Ar-H), 7.00 (d, 2H, 3J = 7.5 Hz, Ar-H), 6.94 (t,
3
3
3
3
1H, J = 7.0 Hz, Ar-H), 6.70 (d, 2H, J = 8.0 Hz, Ar-H), 3.22
6.62 (d, 2H, J = 8.5 Hz, Ar-H), 3.18 [septet, 2H, J = 6.8 Hz,
3
3
[septet, 2H, J = 6.8 Hz, –CH(CH3)2], 1.14 [d, 6H, J = 6.8 Hz,
–CH(CH3)2], 1.15 [d, 6H, 3J = 6.8 Hz, –CH(CH3)2], 0.88 [d, 6H,
–CH(CH3)2], 0.87 [d, 6H, 3J = 6.8 Hz, –CH(CH3)2], -0.51 [s, 6H,
3J = 6.8 Hz, –CH(CH3)2], -0.53 [s, 6H, –Al(CH3)2]; dC (100 MHz,
◦
◦
=
=
–Al(CH3)2]; dC (125 MHz, CDCl3, 25 C) 171.3 (C N), 143.8 (Ar-
CDCl3, 25 C) 171.4 (C N), 143.7 (Ar-C), 142.3 (Ar-C), 137.0
C), 143.6 (Ar-C), 137.2 (Ar-C), 130.5 (Ar–C), 129.7 (Ar-C), 128.7
(Ar-C), 128.72 (Ar-C), 128.1 (Ar-C), 125.7 (Ar-C), 123.4 (Ar-C),
123.3 (Ar-C), 122.7 (Ar-C), 28.1 [–CH(CH3)2], 25.7 [–CH(CH3)2],
22.8 [–CH(CH3)2], -10.8 [–Al(CH3)2].
(Ar-C), 130.8 (Ar-C), 129.7 (Ar-C), 128.9 (Ar-C), 128.5 (Ar-C),
128.3 (Ar-C), 127.9 (Ar-C), 125.9 (Ar-C), 124.4 (Ar-C), 123.5
(Ar-C), 28.2 [–CH(CH3)2], 25.7 [–CH(CH3)2], 22.8 [–CH(CH3)2],
-10.8 [Al(CH3)2]; ESI-MS m/z (%): 446 (trace, M+), 390 (7, [M–
+
i
+
=
Al(CH3)2] ), 264 (100, [2,6- Pr2C6H3N CC6H5] ).
[{PhC(N-2,6-iPr2C6H3)(N-3-FC6H4)}AlMe2] (4g). The pro-
cedure was similar to that of complex 4a, except that the proligand
3g (1.4 g, 3.7 mmol) and a solution of trimethyl aluminium
(2.3 mL, 4.6 mmol, 2 M in toluene) were used. Crystallization
of the crude product from n-hexane afforded colorless crystals
(0.95 g, 60%) (Found: C, 75.66; H, 7.51; N, 6.45. Calc. for
C27H32AlFN2: C, 75.32; H, 7.49; N, 6.51%); mp 98 ◦C; dH
(500 MHz, CDCl3, 25 ◦C) 7.28 (tt, 1H, 3J = 7.5 Hz, 4J = 1.0 Hz
Ar-H), 7.16 (t, 2H, 3J = 8.0 Hz, Ar-H), 7.11 (dd, 1H, 3J = 8.0 Hz,
3J = 6.5 Hz, Ar-H), 7.09–7.04 (m, 3H, Ar-H), 7.02 (d, 2H, 3J =
[{PhC(N-2,6-iPr2C6H3)(N-4-iPrC6H4)}AlMe2] (4j). The pro-
cedure was similar to that of complex 4a, except that proligand 3j
(1.09 g, 2.74 mmol) and a solution of trimethyl aluminium (1.7 mL,
3.4 mmol, 2 M in toluene) were used. Crystallization of the crude
product from n-hexane afforded colorless crystals (0.66 g, 53%)
(Found: C, 78.97; H, 8.78; N, 6.14. Calc. for C30H39AlN2: C, 79.26;
H, 8.65; N, 6.16%); mp 107–108 ◦C; dH (500 MHz, CDCl3, 25 ◦C)
7.24 (t, 1H, 3J = 7.5 Hz, Ar-H), 7.13 (t, 2H, 3J = 8.0 Hz, Ar-H),
7.08 (dd, 1H, 3J = 8.5 Hz, 3J = 7.0 Hz, Ar-H), 7.05 (d, 2H, 3J =
3
4
3
3
7.0 Hz, Ar-H), 6.64 (td, 1H, J = 8.0 Hz, J = 2.5 Hz, Ar-H),
8.5 Hz, Ar-H), 7.00 (d, 2H, J = 8.0 Hz, Ar-H), 6.96 (d, 2H, J
3
4
3
6.47 (dd, 1H, J = 8.0 Hz, J = 1.5 Hz, Ar-H), 6.37 (dt, 1H,
3J = 10.5 Hz, 4J = 2.5 Hz, Ar-H), 3.18 [septet, 2H, 3J = 7.0 Hz,
–CH(CH3)2], 1.14 [d, 6H, 3J = 7.0 Hz, –CH(CH3)2], 0.87 [d, 6H,
3J = 7.0 Hz, –CH(CH3)2], -0.51 [s, 6H, –Al(CH3)2]; dC (125 MHz,
= 8.0 Hz, Ar-H), 6.62 (d, 2H, J = 8.5 Hz, Ar-H), 3.23 [septet,
3
3
2H, J = 6.8 Hz, –CH(CH3)2], 2.79 [septet, 1H, J = 6.8 Hz, –
3
CH(CH3)2], 1.18 [d, J = 6.8 Hz, 6H, –CH(CH3)2], 1.13 [d, 6H,
3J = 6.8 Hz, –CH(CH3)2], 0.87 (d, 6H, 3J = 6.8 Hz, –CH(CH3)2),
◦
CDCl3, 25 C) 171.52 (C N), 162.8 (d, JC–F = 244 Hz), 145.4 (d,
-0.51 (s, 6H, –Al(CH3)2); dC (100 MHz, CDCl3, 25 ◦C) 171.1
1
=
3JC–F = 10 Hz) 143.7 (Ar-C), 136.9 (Ar-C), 130.8 (Ar-C), 129.7
(C N), 143.9 (Ar-C), 143.2 (Ar-C), 141.1 (Ar-C), 137.4 (Ar-C),
130.4 (Ar-C), 129.6 (Ar-C), 129.0 (Ar-C), 128.0 (Ar-C), 126.6 (Ar-
C), 125.6 (Ar-C), 123.3 (Ar-C), 122.9 (Ar-C), 33.4 [–CH(CH3)2],
=
(d, 3JC–F = 10 Hz, (Ar-C)), 129.6 (Ar-C), 128.5 (Ar-C), 128.3 (Ar-
2
C), 125.9 (Ar-C), 123.5 (Ar-C), 118.9 (Ar-C), 110.1 (d, JC–F
=
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 8071–8083 | 8081
©