SCHEME 1. Synthesis of Heterocycles from Substituted
Propiolates and 2-Propynones
Operationally Simple Copper-Promoted Coupling
of Terminal Alkynes with Benzyl Halides
Katherine A. Davies, Ryan C. Abel, and Jeremy E. Wulff*
Department of Chemistry, UniVersity of Victoria, Victoria,
British Columbia, Canada, V8W 3V6
wulff@uVic.ca
ReceiVed February 26, 2009
Benzyl chlorides and bromides are shown to undergo copper-
promoted coupling with a variety of terminal alkynes
including, for the first time, electron-poor acetylenes such
as methyl propiolate. The reaction permits easy access to a
wide range of (functionalized) benzyl-substituted propiolates
(as well as several related alkynes) from commercially
available benzyl halides. These products should in turn
function as useful building blocks for the synthesis of
previously inaccessible (functionalized) benzyl-substituted
heterocycles.
GABAB receptor,6a the cholecystokinin-1 receptor,2b,c HMG-
CoA reductase,8 D3 dopaminergic and R1 adrenergic G protein-
coupled receptors,9 and the substance P receptor.10
Given the utility of substituted propiolates and related
compounds in the synthesis of small-molecule heterocycles with
useful medicinal properties and taking into account the likeli-
hood of both functionalized and unfunctionalized benzyl sub-
stituents acting as rigid lipophilic groups in pharmacophore
development, it is surprising that none of the reactions in Scheme
1 have been reported for 4-aryl-2-butynoates (i.e., 1a, R )
benzyl) or the corresponding ketones. This appears to be due
to difficulties in preparing the starting compounds; while there
exist excellent methods for the synthesis of alkyl- and aryl-
substituted propiolates,11 the benzyl-containing analogues are
more troublesome, since they are prone to isomerization to the
corresponding allenes.12 Moreover, benzyl alkynes contain a
rather acidic center, which might prove incompatible with the
Unsymmetrically substituted alkynes are useful intermediates
in the synthesis of natural products, drug candidates, supramo-
lecular constructs, and organic materials.1 In particular, substi-
tuted propiolates (1a, Scheme 1) and 2-propynones (1b) have
proven useful for the synthesis of small-molecule heterocycles
for medicinal chemistry programs. Such compounds have been
previously used in the preparation of pyrazoles (2),2 1,2,3-
triazoles (3),3 2-pyridones (4),4 pyrroles (5),5 pyrimidines (6),6
and pyridines (7),7 as illustrated in Scheme 1. Among other
useful properties, some of these compounds (and very closely
related structures) have been reported as inhibitors of the
(6) (a) Verron, J.; Malherbe, P.; Prinssen, E.; Thomas, A. W.; Nock, N.;
Masciadri, R. Tetrahedron Lett. 2007, 48, 377–380. (b) Chen, D.; Banphavichit,
V.; Reibenspies, J.; Burgess, K. Organometallics 2007, 26, 855–859. (c) Bagley,
M. C.; Hughes, D. D.; Lubinu, M. C.; Merritt, E. A.; Taylor, P. H.; Tomkinson,
N. C. O. QSAR Comb. Sci. 2004, 23, 859–867. (d) Johns, B. A.; Gudmundsson,
K. S.; Turner, E. M.; Allen, S. H.; Jung, D. K.; Sexton, C. J.; Boyd, F. L.; Peel,
M. R. Tetrahedron 2003, 59, 9001–9011.
(1) (a) Chemistry of Acetylenes; Viehe, H. G. Ed.; Marcel Dekker: New York,
1969. (b) Acetylene Chemistry: Chemistry, Biology, and Materials Science;
Diederich, F., Stang, P., Tykwinski, R. R. Eds.; Wiley-VCH GmbH and Co.
KGa: Weinheim, 2005.
(2) (a) Bagley, M. C.; Lubinu, M. C.; Mason, C. Synlett 2007, 704–708. (b)
Liang, J. T.; Mani, N. S.; Jones, T. K. J. Org. Chem. 2007, 72, 8243–8250. (c)
Gomez, L.; Hack, M. D.; McClure, K.; Sehon, C.; Huang, L.; Morton, M.; Li,
L.; Barrett, T. D.; Shankley, N.; Breitenbucher, J. G. Bioorg. Med. Chem. Lett.
2007, 17, 6493–6498.
(3) Majireck, M. M.; Weinreb, S. M. J. Org. Chem. 2006, 71, 8680–8683.
(4) Liu, W.; Hickey, E. R.; Cywin, C. L.; Fleck, R. W.; Spero, D. M.;
Morwick, T. M.; Proudfoot, J. R. PCT Int. Appl. WO2005035537.
(5) (a) Kamijo, S.; Kanazawa, C.; Yamamoto, Y. J. Am. Chem. Soc. 2005,
127, 9260–9266. (b) Bhattacharya, A.; Cherukuri, S.; Plata, R. E.; Patel, N.;
Tamez, V.; Grosso, J. A.; Peddicord, M.; Palaniswamy, V. A. Tetrahedron Lett.
2006, 47, 5481–5484. (c) Larionov, O. V.; de Meijere, A. Angew. Chem., Int.
Ed. 2005, 44, 5664–5667.
(7) (a) Xiong, X.; Bagley, M. C.; Chapaneri, K. Tetrahedron Lett. 2004, 45,
6121–6124. (b) Bohlmann, F.; Rahtz, D. Chem. Ber. 1957, 90, 2265–2272.
(8) Roth, B. D.; Blankley, C. J.; Chucholowski, A. W.; Ferguson, E.; Hoefle,
M. L.; Ortwine, D. F.; Newton, R. S.; Sekerke, C. S.; Sliskovic, D. R.; Wilson,
M. J. Med. Chem. 1991, 34, 357–366.
(9) Loaiza, P. R.; Lber, S.; Hbner, H.; Gmeiner, P. J. Comb. Chem. 2006, 8,
252–261.
(10) Journet, M.; Cai, D.; Hughes, D. L.; Kowal, J. J.; Larsen, R. D.; Reider,
P. J. Org. Process Res. DeV. 2005, 9, 490–498.
(11) Maezaki, N.; Yagi, S.; Yoshigami, R.; Maeda, J.; Suzuki, T.; Ohsawa,
S.; Tsukamoto, K.; Tanaka, T. J. Org. Chem. 2003, 68, 5550–5558.
(12) For direct access to allenes by coupling benzyl chlorides and terminal
alkynes, see ref 19a.
10.1021/jo900444x CCC: $40.75
Published on Web 04/09/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 3997–4000 3997