Table 3 (continued)
Z = 4, 21754 reflections measured, 3269 unique used for calculation
(Rint = 0.0666). The final wR(F2) was 0.1096 (all data).w
10aa–fa
Entry Substrate (% yield)
11aa–fa
(% yield)
Pentacycle 11aa–fa
1 L. F. Tietze and A. Modi, Med. Res. Rev., 2000, 20, 304–322.
2 L. F. Tietze, Chem. Rev., 1996, 96, 115–136.
3 L. F. Tietze, G. Brasche and K. M. Gericke, Domino Reactions in
Organic Synthesis, Wiley-VCH Verlag GmbH & Co, 2006.
4 G. Satyanarayana and M. E. Maier, J. Org. Chem., 2008, 73,
5410–5415.
10
9fab
30
51
5 For some recent examples of palladium-catalyzed domino reactions,
see: (a) G. Cuny, M. Bois-Choussy and J. Zhu, Angew. Chem., 2003,
115, 4922–4925 (Angew. Chem., Int. Ed., 2003, 42, 4774–4777);
G. Cuny, M. Bois-Choussy and J. Zhu, J. Am. Chem. Soc., 2004,
126, 14475–14484; (b) H. Ohno, M. Yamamoto, M. Iuchi and
T. Tanaka, Angew. Chem., 2005, 117, 5233–5236 (Angew. Chem., Int.
Ed., 2005, 44, 5103–5106); (c) H. Ohno, M. Iuchi, N. Fujii and
T. Tanaka, Org. Lett., 2007, 9, 4813–4815; (d) S. Gowrisankar,
H. S. Lee, K. Y. Lee, J.-E. Lee and J. N. Kim, Tetrahedron Lett.,
2007, 48, 8619–8622; (e) A. Rudolph, N. Rackelmann and M. Lautens,
Angew. Chem., 2007, 119, 1507–1510 (Angew. Chem., Int. Ed., 2007, 46,
1485–1488); (f) R. T. Ruck, M. A. Huffman, M. M. Kim, M. Shevlin,
W. V. Kandur and I. W. Davies, Angew. Chem., 2008, 120, 4789–4792
(Angew. Chem., Int. Ed., 2008, 47, 4711–4714); (g) R. Jana, S. Samanta
and J. K. Ray, Tetrahedron Lett., 2008, 49, 851–854;
(h) C. Blaszykowski, E. Aktoudianakis, D. Alberico, C. Bressy,
D. G. Hulcoop, F. Jafarpour, A. Joushaghani, B. Laleu and
M. Lautens, J. Org. Chem., 2008, 73, 1888–1897; (i) M. B.
Bertrand, J. D. Neukom and J. P. Wolfe, J. Org. Chem., 2008, 73,
8851–8860.
6 For recent examples, see: (a) T. J. Harrison, B. O. Patrick and
G. R. Dake, Org. Lett., 2007, 9, 367–370; (b) E. Prusov and
M. E. Maier, Tetrahedron, 2007, 63, 10486–10496;
(c) G. Guazzelli, L. A. Duffy and D. J. Procter, Org. Lett., 2008,
10, 4291–4294 and references therein.
7 For some reviews, see: (a) S. A. A. El Bialy, H. Braun and
L. F. Tietze, Synthesis, 2004, 2249–2262; (b) G. Dake, Tetrahedron,
2006, 62, 3467–3492.
8 For some reviews, see: (a) G. Dyker, Angew. Chem., 1999, 111,
1808–1822 (Angew. Chem., Int. Ed., 1999, 38, 1698–1712);
(b) F. Kakiuchi and N. Chatani, Adv. Synth. Catal., 2003, 345,
1077–1101; (c) K. Godula and D. Sames, Science, 2006, 312, 67–72;
(d) L.-C. Campeau and K. Fagnou, Chem. Commun., 2006,
a
Reaction conditions: aryl bromide 9 (0.15 M in DMF), Cs2CO3
(4 equiv.), ligand 12 (20 mol%), Pd(OAc)2 (10 mol%), 120 1C,
3 d. Instead of ligand 12, Ph3P (20 mol%) was used.
b
Scheme 3 Proposed mechanism for the formation of pentacycles 11.
In a similar manner, the other enamides, 9ab–fa, were
transformed to spiro compounds 11ab–fa (Table 3). In all cases,
some of the corresponding debrominated product, 10ab–fa, was
also observed. Except for ester substrate 9ca and dimethoxy
substrate 9fa, the Buchwald aminophosphine ligand 12 was
used. For these two cases, PPh3 served as the ligand, since the
aminophosphine derivatives co-eluted with the products 11ca
and 11fa. In case of substrate 9ca, the pentacyclic product 11ca
was not formed at all (Table 3, entry 5). This can be attributed
to the ester function, since it had already caused a drop in yield
in the Jeffrey–Heck coupling of iodobromide 4c to aldehyde 5c.
In pentacycles 11, the methine hydrogen next to the nitrogen
typically appears at around d 4.8 in their 1H NMR spectrum. In
their 13C NMR spectrum, the corresponding carbon atom
resonates at d 70 and the spiro carbon is found at around d 42.
The formation of these pentacyclic spiro derivatives can
be explained by a Heck cyclization process (Scheme 3). Thus,
the initial arylpalladium species inserts into the enamide double
bond in a typical cis fashion, resulting in intermediate A.
The palladium is then able to leave the molecule via a final
C–H activation and HBr elimination.
1253–1264;
(e)
S.
Pascual,
P.
de
Mendoza
A. M. Echavarren, Org. Biomol. Chem., 2007, 5, 2727–2734.
and
9 (a) J. Hitce, P. Retailleau and O. Baudoin, Chem.–Eur. J., 2007, 13,
792–799; (b) T. Watanabe, S. Oishi, N. Fujii and H. Ohno, Org.
Lett., 2008, 10, 1759–1762.
10 D. Garcia-Cuadrado, A. A. C. Braga, F. Maseras and
A. M. Echavarren, J. Am. Chem. Soc., 2006, 128, 1066–1067;
´
D. J. Cardenas, B. Martin-Matute and A. M. Echavarren,
J. Am. Chem. Soc., 2006, 128, 5033–5040.
11 G. Satyanarayana and M. E. Maier, Org. Lett., 2008, 10,
2361–2364.
12 Compound 4b: (a) R. R. Bard, J. F. Bunnett and R. P. Traber,
J. Org. Chem., 1979, 44, 4918–4924; (b) G. P. M. van Klink, H. J.
R. de Boer, G. Schat, O. S. Akkerman, F. Bickelhaupt and
A. L. Spek, Organometallics, 2002, 21, 2119–2135.
13 Compound 4c: C. B. Vu, E. G. Corpuz, T. J. Merry, S. G. Pradeepan,
C. Bartlett, R. S. Bohacek, M. C. Botfield, C. J. Eyermann,
B. A. Lynch, I. A. MacNeil, M. K. Ram, M. R. van Schravendijk,
S. Violette and T. K. Sawyer, J. Med. Chem., 1999, 42, 4088–4098.
14 Compound 4d: (a) S.-i. Kuwabe, K. E. Torraca and
S. L. Buchwald, J. Am. Chem. Soc., 2001, 123, 12202–12206;
In summary, we have discovered a facile synthesis for novel
spiropentacyclic compounds 11 from cyclic enamides of type 9.
These enamides feature
a (2-bromophenyl)propyl sub-
stituent in the 5-position that allows a palladium-mediated
domino sequence. The initial arylpalladium intermediate
inserts into the enamide double bond, generating another
organopalladium intermediate. The sequence is terminated
by a final C–H activation and the expulsion of Pd(0).
Financial support by the Deutsche Forschungsgemeinschaft
and the Fonds der Chemischen Industrie is gratefully
acknowledged. G. S. thanks the Alexander von Humboldt
foundation for a postdoctoral fellowship.
(b) A. Furstner and J. W. J. Kennedy, Chem.–Eur. J., 2006, 12,
¨
7398–7410.
15 Compounds 4e and 4f: (a) K. Orito, T. Hatakeyama, M. Takeo and
H. Suginome, Synthesis, 1995, 1273–1277; (b) T. Jensen, H. Pedersen,
B. Bang-Andersen, R. Madsen and M. Joergensen, Angew. Chem.,
2008, 120, 902–904 (Angew. Chem., Int. Ed., 2008, 47, 888–890).
16 (a) T. Jeffery, Tetrahedron Lett., 1991, 32, 2121–2124;
(b) J. P. Wolfe, R. A. Rennels and S. L. Buchwald, Tetrahedron,
1996, 52, 7525–7546; (c) D. Bruyere, D. Bouyssi and G. Balme,
Tetrahedron, 2004, 60, 4007–4017.
Notes and references
y Crystal data for 11aa: C21H21NO, M = 303.39, monoclinic, a =
11.3172(13), b = 7.6048(6), c = 18.468(2) A, b = 104.156(9)1,
V = 1541.2(3) A3, T = 173 K, space group P21/n (no. 1014),
17 H. Tomori, J. M. Fox and S. L. Buchwald, J. Org. Chem., 2000, 65,
5334–5341.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 1571–1573 | 1573