1854
Y. Chen et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1851–1854
CO2Et
CO2Et
CO2Et
OH
TBSO
TBSO
K2CO3
TBSO
NaOAc
75%
NBS
AIBN
87%
13
Br
O
OAc
NaH
EtOH/H2O
67%
O
O
33
35
34
CO2Et
O
CO2Et
TBSO
PCC
31%
1)EtO P CH CO Et,
2
2
HO
CHO
OEt
2) TBAF
95%
O
36
CO2Et
O
37
Scheme 5.
Table 1
National Basic Research Program of China (2007CB914504). We
thank Mr. Jianjun Wang for his assistance with the synthesis.
Inhibitory activity of compounds
Compd
HUVEC
IC50, lM
References and notes
A549
Bel-7402
MCF-7
2
9
>50
NA
27.6
>50
NA
32.6
4.3
32.9
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1. (a) Ausprunk, D. H.; Folkman, J. Microvasc. Res. 1977, 14, 53; (b) Folkman, J. Adv.
Cancer Res. 1985, 43, 175; (c) Kerbel, R. S. Carcinogenisis 2000, 1, 2505.
2. (a) Holash, J.; Maisonpierre, P. C.; Compton, D.; Boland, P.; Alexander, C. R.;
Zagzag, D.; Yancopoulos, G. D.; Wiegand, S. J. Science 1999, 284, 1994; (b) Inoue,
K.; Slaton, J. W.; Karashima, T.; Yoshikawa, C.; Shuin, T.; Sweeney, P.; Millikan,
R.; Dinney, C. P. Clin. Cancer Res. 2000, 6, 4866; (c) Jain, R. K. Semin Oncol. 2002,
29, 3.
14
18
25
29
32
37
3. (a) Zetter, B. R. Annu. Rev. Med. 1998, 49, 407; (b) Carmeliet, P.; Jain, R. K. Nature
2000, 407, 249; (c) Folkman, J. Semin Oncol. 2002, 29, 15.
4. Unger, C. Drugs Future 1997, 22, 1337.
Notes: ‘NA’ means ‘not active’; ‘>50’ represents ‘approaching 50% inhibition at
50 M’.
5. Hur, J. M.; Shim, J. S.; Jung, H. J.; Kwon, H. J. Exp. Mol. Med. 2005, 37, 133.
6. Apers, S.; Paper, D.; Bürgermeister, J.; Baronikova, S.; Dyck, S. V.; Lemière, G.;
Vlietinck, A.; Pieters, L. J. Nat. Prod. 2002, 65, 718.
l
7. (a) Ogura, H.; Nakanishi-Ueda, T.; Ueda, T.; Iwai, S.; Uchida, S.; Saito, Y.;
Taguchi, Y.; Yasuhara, H.; Armstrong, D.; Oguchi, K.; Koide, R. J. Pharmacol. Sci.
2007, 103, 234; (b) Saito, M.; Ueo, M.; Kametaka, S.; Saigo, O.; Uchida, S.;
Hosaka, H.; Sakamoto, K.; Nakahara, T.; Mori, A.; Ishii, K. Biol. Pharm. Bull. 2008,
31, 1959.
than 32. Due to the bulkiness of 37 or/and the possibility that two
acrylate groups make the interaction become complicated, 37 ex-
pressed much weaker inhibitory activity than 32 to HUVEC
proliferation.
8. Shen, J. X.; Zhang, P. Z.; Qiao, M. Acta. Pharm. Sinica 1988, 23, 545.
9. Giza, C. A.; Hinman, R. L. J. Org. Chem. 1964, 29, 1453.
10. Lu, B.; Wang, B.; Zhang, Y.; Ma, D. J. Org. Chem. 2007, 72, 5337.
11. Spectral data for compound 14: ESI-MS: m/z 247 [M+H]+, 245 [MÀH]+. 1H NMR
(CDCl3): d 7.75 (dd, J = 1.6, 16 Hz, 1H), 7.28 (dd, J = 1.6, 6.8 Hz, 1H), 7.22 (d,
J = 2.4 Hz, 1H), 6.80 (dd, J = 2.8, 6.0 Hz, 1H), 6.42 (d, J = 16 Hz, 1H), 4.28 (q,
J = 7.2 Hz, 2H), 2.54 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H). 13C NMR (DMSO-d6): d 166.8,
160.5, 154.6, 148.1, 135.5, 126.6, 116.1, 113.2, 112.2, 111.9, 105.6, 60.4, 14.7,
12.9.
It is important to note that all of these compounds showed
remarkable preference for their inhibitory activity against HUVEC
proliferation and absence of the inhibitory activity to cancer cells
of A549, Bel-7402 and MCF-7.
In summary, a series of benzofuran derivatives were synthe-
sized and tested against the proliferation of HUVEC, A549, Bel-
7402 and MCF-7. Compound 32 exhibited remarkable selectivity
against HUVEC proliferation with IC50 in low micromolar range.
These data suggested that array order of methyl, acrylate and car-
boxylate groups in benzofuran scaffold is the basic requirement for
inhibitory activity against HUVEC proliferation. The results demon-
strated that benzofuran scaffold represents a promising structural
core to discover a new class of active and selective angiogenesis
inhibitors.
12. Spectral data for compound 29: ESI-MS: m/z 303 [MÀH]+, 305 [M+H]+, 327
[M+Na]+, 607 [2MÀH]+. 1H NMR (CDCl3): d 8.46 (d, J = 16.4 Hz, 1H), 7.48 (d,
J = 8.8 Hz, 1H), 7.35 (d, J = 2.4 Hz, 1H), 7.05 (dd, J = 2.4, 6.4 Hz, 1H), 6.67 (d,
J = 16.4 Hz, 1H), 4.49 (q, J = 7.2 Hz, 2H), 4.31 (q, J = 7.2 Hz, 2H), 1.47 (t,
J = 7.2 Hz, 3H), 1.37 (t, J = 7.2 Hz, 3H).
13. Spectral data for compound 32: ESI-MS: m/z 303 [MÀH]+, 607 [2MÀH]+, 631
[2M+Na]+, 911 [3MÀH]+. 1H NMR (CD3OD): d 8.25 (d, J = 16 Hz, 1H), 7.38 (d,
J = 6.0 Hz, 1H), 6.83 (dd, J = 2.4, 6.0 Hz, 1H), 6.68 (d, J = 16 Hz, 1H), 4.43 (q,
J = 7.2 Hz, 2H), 4.27 (q, J = 7.2 Hz, 2H), 1.46 (t, J = 7.2 Hz, 3H), 1.33 (t, J = 7.2 Hz,
3H). 13C NMR (DMSO-d6): d 165.6, 163.0, 155.9, 155.2, 148.7, 129.9, 126.7,
123.0, 117.2, 113.7, 112.5, 106.9, 61.3, 61.1, 14.5, 14.4.
14. Spectral data for compound 37: ESI-MS: m/z 329 [MÀH]+, 331 [M+H]+, 353
[M+Na]+, 659 [MÀH]+, 683 [2M+Na]+. 1H NMR (DMSO-d6): d 9.46 (s, 1H), 7.84
(d, J = 16.0 Hz, 1H), 7.73 (d, J = 16.0 Hz, 1H), 7.43 (d, J = 8.8 Hz, 1H), 7.20 (d,
J = 2.4 Hz, 1H), 6.89 (dd, J = 2.4, 6.4 Hz, 1H), 6.48 (dd, J = 6.0, 10.0 Hz, 1H), 4.17
(m, 4H), 1.21 (m, 6H). 13C NMR (DMSO-d6): d 166.3, 165.8, 155.2, 153.2, 149.2,
133.4, 128.3, 126.2, 120.7, 120.6, 119.0, 117.2, 112.8, 106.3, 61.0, 60.8, 14.7,
14.6.
Acknowledgements
This work was supported by the Knowledge Innovation
Program of Chinese Academy of Sciences (KSCX-2-YW-R-22) and