1902
S. H. Lee et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1899–1902
receptor) or cell membranes (containing CB2 receptor) were incubated in 96-
well plate with TME buffer containing 0.5% essentially fatty acid free bovine
serum albumin (BSA), 3 nM [3H]WIN55,212-2 (for CB2 receptor, NEN; specific
activity 50–80 Ci/mmol) or 3 nM ([3H]CP55,940, [3H]2-[(1S,2R,5S)-5-hydroxy-
2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol, for CB1
receptor, NEN; specific activity 120–190 Ci/mmol) and various concentrations
discussions throughout small molecule programs at GCC. Also we
are grateful to Dr. Eun Chul Huh, Mr. Jung Ho Kim and Ms. Jae-
Young Jang at GCC Office of R& D planning and coordination for
their supports and services.
of the synthesized cannabinoid ligands in a final volume of 200 lL. The assays
Supplementary data
were incubated for 1 h at 30 °C and then immediately filtered over GF/B glass
fiber fiber filter (PerkinElmer Life and Analytical Sciences, Boston, MA) that had
been soaked in 0.1% PEI for 1 h by a cell harvester (PerkinElmer Life and
Analytical Sciences, Boston, MA). Filters were washed five times with ice-cold
TBE buffer containing 0.1% essentially fatty acid free BSA, followed by oven-dried
for 60 min and then placed in 5 mL of scintillation fluid (Ultima Gold XR;
PerkinElmer Life and Analytical Sciences, Boston, MA), and radioactivity was
quantitated by liquid scintillation spectrometry. In CB1 and CB2 receptor
Supplementary data associated with this article can be found, in
References and notes
competitive binding assay, nonspecific binding was assessed using
rimonabant and 1 M WIN55,212-2, respectively. Specific binding was defined
as the difference between the binding that occurred in the presence and absence
of 1 M concentrations of rimonabant or WIN55,212-2 and was 70–80% of the
total binding. IC50 was determined by nonlinear regression analysis using
Graph–Pad PRISM. All data were collected in triplicate and IC50 was determined
from three independent experiments.
1 lM
1. Lange, J. H. M.; Kruse, C. G. Drug Discovery Today 2005, 10, 693.
2. Howlett, A. C.; Breivogel, C. S.; Childers, S. R.; Deadwyler, S. A.; Hampson, R. E.;
Porrio, L. J. Neuropharmacology 2004, 47, 345.
3. Lafontan, M.; Piazza, P. V.; Girard, J. Diabetes Metab. 2007, 33, 85. and reference
therein..
4. (a) Carrier, E. J.; Kearn, C. S.; Barkmeier, A. J.; Breese, N. M.; Yang, W.;
Nithipatikom, K.; Pfister, S. L.; Cambell, W. B.; Hillard, C. J. Mol. Pharmacol. 2004,
65, 999; (b) Klein, T. W.; Newton, C.; Larsen, K.; Lu, L.; Perkins, I.; Nong, L.;
Friedman, H. J. Leukocyte Biol. 2003, 74, 486.
5. (a) Rinaldi-Carmona, M.; Barth, F.; Héaulme, M.; Alonso, R.; Shire, D.; Congy, C.;
Soubrié, P.; Breliére, J.-C.; le Fur, G. Life Sci. 1995, 56, 1941; (b) Rinaldi-Carmona,
M.; Barth, F.; Héaulme, M.; Shire, D.; Calandra, B.; Congy, C.; Martinez, S.;
Maruani, J.; Néliat, G.; Caput, D.; Ferrara, P.; Soubrié, P.; Breliére, J.-C.; le Fur, G.
FEBS Lett. 1994, 350, 240.
6. Lange, J. H.; Coolen, H. K.; van Stuivenberg, H. H.; Dijksman, J. A.; Herremans, A.
H.; Ronken, E.; Keizer, H. G.; Tipker, K.; McCreary, A. C.; Veerman, W.; Wals, H.
C.; Stork, B.; Verveer, P. C.; den Hartog, A. P.; de Jong, N. M.; Adolfs, T. J.;
Hoogendoorn, J.; Kruse, C. G. J. Med. Chem. 2004, 47, 627.
7. Lin, L. S.; Lanza, T. J.; Jewell, J. J. P.; Liu, P.; Shah, S. K.; Qi, H.; Tong, X.; Wnag, J.;
Xu, S. S.; Fong, T. M.; Shen, C.-P.; Lao, J.; Xiao, J. C.; Shearman, L. P.; Stribling, D.
S.; Rosko, K.; Strack, A.; Marsh, D. J.; Feng, Y.; Kumar, S.; Samuel, K.; Yin, W.; der
Ploeg, L. V.; Mills, S. G.; MacCoss, M.; Goulet, M. T.; Hagmann, W. K. J. Med.
Chem. 2006, 49, 7584.
8. (a) Barth, F.; Congy, C.; Martinez, S.; Rinaldi, M. WO97/19063, 2000.; (b) Barth,
F.; Casellas, P.; Congy, C.; Martinez, S.; Rinaldi, M. C07D/23114, 1995.
9. Hutst, D. P.; Lynch, D. L.; Barnett-Norris, J.; Hyatt, S. M.; Seltzman, H. H.; Zhong,
M.; Song, Z.-H.; Nie, J.; Lewis, D.; Reggio, P. H. Mol. Pharmacol. 2002, 62, 1274.
10. Shim, J.-Y.; Welsh, W. J.; Cartier, E.; Edwards, J. L.; Howlett, A. C. J. Med. Chem.
2002, 45, 1447.
l
l
23. As of November 5, 2008, Sanofi-Aventis, Merck, and Pfizer announced that
they have decided to discontinue their ongoing clinical development
programs about rimonabant (SR141716), taranabant (MK-0364), and
otenabant (CP-945,598), respectively based on changing regulatory
perspectives on the risk/benefit profile of the CB1 class and likely new
regulatory requirements for approval.
24.
Comparison of alternative routes to key intermediates 81,b
Scheme 1
Scheme 2
R1
4-(Chlorophenyl) cyclopropyl
19 (8-steps)
8.119
t-Butyl
15 (8-steps)
4.835
Overall yield (%)
Retention time (min)
Purity (%)
99
99
b
14a
Compound 9 was prepared from compound 1 as described in
.
1
HPLC Purity was determined by Agilent 1200 series high performance liquid
chromatography with UV detection at 254 nm (XterraÒ MS C18 3.5
l
m,
2.1 Â 50 mm, 12 min, 0.3 mL/min flow rate, 50–100% 0.05% TFA in CH3CN/ 100–50%
0.05% TFA in H2O).
11. (a) Dow, L.R. U.S. Patent 2004/0077650 A1, 2004.; (b) Coe, J.W. U.S. Patent
2005/0043327 A1, 2005.; (c) Barth, F.; Congy, C.; Gueule, P.; Rinaldi-Carmona,
M.; Van Broeck, D. PCT Patent Application WO2006/087480A1, 2006.
12. Kang, S. Y.; Lee, S.-H.; Seo, H. J.; Jung, M. E.; Ahn, K.; Kim, J.; Lee, J. Bioorg. Med.
Chem. Lett. 2008, 18, 2385.
25.
Table of HPLC retention time and Purity of final compoundsa
Compound
Retention time (min)
Purity (%)
13. (a) Barth, F.; Congy, C.; Gueule, P.; Ridaldi-Carmona, M.; Van Brodeck, D. PCT
Patent WO 2006/087480 A1, 2006.; (b) Moritani, Y. PCT Patent WO 2007/
046550 A1, 2007.
12a
12b
12c
12d
12e
12f
12g
12h
12i
3.717
4.279
5.483
6.831
6.601
5.705
7.988
8.201
2.953
9.540
6.280
4.703
4.513
5.551
6.594
5.338
9.850
6.597
11.795
6.661
>99
>99
>99
99
14. (a) Lee, S. H.; Seo, H. J.; Lee, S.-H.; Jung, M. E.; Park, J.-H.; Yoo, J.; Yun, H.; Na, J.;
Kang, S. Y.; Song, K.-S.; Kim, M.-a.; Chang, C.-H.; Kim, J.; Lee, J. J. Med. Chem.
2008, 51, 7216; (b) Lee, J.; Kim, J.; Chang, C.-H.; Lee, S.H.; Seo, H.J.; Kang, S.Y.;
Song, K.S.; Kim, J.Y.; Kim, M.-a.; Lee, S.-H.; Ahn, K.; Jung, M.E.; Park, J.-H. PCT
Patent WO 2008/039023 A1, 2008.; (c) Kim, J. Y.; Seo, H. J.; Lee, S.-H.; Jung, M.
E.; Ahn, K.; Kim, J.; Lee, J. Bioorg. Med. Chem. Lett. 2009, 19, 142.
15. Hilderbrandt, A. L.; Kelly-Sullivan, D. M.; Black, S. C. Eur. J. Pharmacol. 2003, 462,
125–132.
16. Lan, R.; Liu, Q.; Fan, P.; Lin, S.; Fernando, S. R.; McCallion, D.; Pertwee, R.;
Makriyannis, A. J. Med. Chem. 1999, 42, 769.
17. Amengual, R.; Marsol, C.; Mayeux, E.; Sierra, M.; Wagner, P. PCT Patent WO
2006/133926 A1, 2006.
18. (a) Brain, C. T.; Paul, J. M.; Loong, Y.; Oakely, P. J. Tetrahedron Lett. 1999, 40,
3275–3278; (b) Brain, C. T.; Brunton, S. A. Synlett 2001, 382.
19. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
20. Kuster, J. E.; Stevenson, J. I.; Ward, S. J.; D’Ambra, T. E.; Haycock, D. A. J.
Pharmacol. Exp. Ther. 1993, 264, 1352.
99
>99
>99
>99
>99
99
>99
>99
>99
>99
99
12j
12k
12l
12m
12n
12o
12p
12q
12r
12s
12t
>99
>99
>99
99
>99
21. Murphy, J. W.; Kendall, D. A. Biochem. Pharmacol. 2003, 65, 1623.
22. CB1 and CB2 Receptor Binding Assay. For the CB1 receptor binding studies, rat
cerebellar membranes were prepared aspreviously described by the methods of
Kuster et al.20 MaleSprague–Dawley rats (200–300 g) were sacrificed by
decapitation and the cerebella rapidly removed. The tissue was homogenized
in 30 volumes of TME buffer (50 mM Tris–HCl, 1 mM EDTA, 3 mM MgCl2,
a
HPLC Retention time and Purity were determined by Agilent 1200 series high
performance liquid chromatography with UV detection at 254 nm (XterraÒ MS C18
3.5
lm, 2.1 Â 50 mm, 12 min, 0.3 mL/min flow rate, 50–100% 0.05% TFA in CH3CN/
100–50% 0.05% TFA in H2O).
pH = 7.4) using
a Dounce homogenizer. The crude homogenates were
immediately centrifuged (48,000g) for 30 min at 4 °C. The resultant pellets
were resuspended in 30 volumes of TME buffer, and protein concentration was
determined by the method of Bradford and stored at À70 °C until use. For the CB2
receptor binding studies, CHO K-1 cells were transfected with the human CB2
receptor as previously described, and cell membranes were prepared as
described above.21 Competitive binding assays were performed as described.
26. As pointed out by
a
reviewer, compound 12s represents the best
diarylpyrazole-oxadiazole to date, and the selectivity is impressive. A bulky
group such as (4-chlorophenyl)cyclopropyl in compound 12 appears to
deactivate CB2 receptor binding affinity while maintaining its activity for
CB1 receptor, thereby improving CB2/CB1 selectivity.
Briefly, approximately 10 lg of rat cerebella membranes (containing CB1