Green Chemistry
Communication
Notes and references
1 S. D. Roughley and A. M. Jordan, J. Med. Chem., 2011, 54,
3451.
2 E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606.
3 D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey,
J. L. Leazer Jr., R. J. Linderman, K. Lorenz, J. Manley,
B. A. Pearlman, A. Wells, A. Zaks and T. Y. Zhang, Green
Chem., 2007, 9, 411.
4 V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471;
H. Lundberg, F. Tinnis, N. Selander and H. Adolfsson,
Chem. Soc. Rev., 2014, 43, 2714; R. M. de Figueiredo,
S. Suppo and J. M. Campagne, Chem. Rev., 2016, 116,
12029.
Fig. 2 In vivo production of a key amide intermediate in the synthesis
of Losmapimod.
5 K. Arnold, B. Davies, D. Herault and A. Whiting, Angew.
Chem., Int. Ed., 2008, 47, 2673; N. Gernigon, R. M. Al-Zoubi
and G. Hall, J. Org. Chem., 2012, 77, 3886; K. Ishihara and
Y. Lu, Chem. Sci., 2016, 7, 1276; H. Noda, M. Furutachi,
Y. Asada, M. Shibasaki and N. Kumagai, Nat. Chem., 2017,
9, 571.
6 C. Gunanathan, Y. B. David and D. Milstein, Science, 2007,
317, 790; S. de Sarkar and A. Studer, Org. Lett., 2010, 12,
1992; B. Shen, D. M. Makley and J. N. Johnston, Nature,
2010, 465, 1027; H. Lundberg and H. Adolfsson, ACS Catal.,
2015, 5, 3271; H. Lundberg, F. Tinnis, J. Zhang, A. Algarra,
F. Himo and H. Adolfsson, J. Am. Chem. Soc., 2017, 139,
2286.
7 V. Gotor-Fernandez, E. Busto and V. Gotor, Adv. Synth.
Catal., 2006, 348, 797; A. Goswami and S. G. Van Lanen,
Mol. Biosyst., 2015, 11, 338; J. Pitzer and K. Steiner,
J. Biotechnol., 2016, 235, 32; A. J. L. Wood, N. J. Weise,
J. D. Frampton, M. S. Dunstan, M. A. Hollas,
S. R. Derrington, R. C. Lloyd, D. Quaglia, F. Parmeggiani,
D. Leys, N. J. Turner and S. L. Flitsch, Angew. Chem., Int.
Ed., 2017, 56, 14498; R. Hara, K. Hirai, S. Suzuki and
K. Kino, Sci. Rep., 2018, 8, 2950.
8 E. P. Karagianni, E. Kontomina, B. Davis, B. Kotseli,
T. Tsirka, V. Garefalaki, E. Sim, A. E. Glenn and
S. Boukouvala, Sci. Rep., 2015, 12900, 1; X. Kubiak, I. L. de
la Sierra-Gallay, A. F. Chaffotte, B. Pluvinage, P. Weber,
A. Haouz, J.-M. Dupret and F. Rodrigues-Lima, J. Biol.
Chem., 2013, 288, 22493; I. M. Westwood and E. Sim,
Biochemistry, 2007, 8, 3.
Conclusions
We have developed a versatile biosynthetic approach to amide
bond formation which addresses the growing sustainability
concerns associated with traditional amine and carboxylic acid
coupling methods. The methodology developed utilizes renew-
able whole cell catalysts which do not require the addition of
external co-factors. The transformations operate in aqueous
media under ambient conditions and do not require a signifi-
cant excess of either coupling partner. Furthermore, it is
anticipated that many desirable amide products can be iso-
lated following simple acid/base extractions, as highlighted
herein during the production of a key Losmapimod inter-
mediate, or through selective crystallization of amide products.
At present, substrate loadings are modest and there is a clear
requirement for future process intensification. However, there
is considerable precedent for dramatically increasing substrate
loadings in biotransformations through biocatalyst engineer-
ing (directed evolution),19 including several products in GSK’s
portfolio. Our methodology allows access to structurally
diverse secondary and tertiary amides by exploiting the natural
diversity of CLs and NATs. It is anticipated that laboratory evol-
ution will further expand the substrate range and practical
utility of these enzyme families. Substrate profiling of NATs
and CLs enables the predictable design of self-sufficient whole
cell catalysts, thus adding amide bond formation to the
growing repertoire of transformations accessible to synthetic
biology.
9 Z. D. Dunn, W. J. Wever, N. J. Economou, A. A. Bowersand
and B. Li, Angew. Chem., Int. Ed., 2015, 54, 5137;
M. J. Koetsier, P. A. Jekel, M. A. van den Berg,
R. A. L. Bovenberg and D. B. Janssen, Biochem. J., 2009,
417, 467.
Conflicts of interest
There are no conflicts to declare.
10 K. Kang and K. Back, Metab. Eng., 2009, 11, 64; S.-M. Jang,
A. Ishihara and K. Back, Plant Physiol., 2004, 135, 346.
11 A. Sabbagh, C. Veyssière, E. Lecompte, S. Boukouvala,
E. S. Poloni, P. Darlu and B. Crouau-Roy, Evol. Biol., 2013,
13, 62.
Acknowledgements
The authors would like to thank the global GSK Synthetic 12 R. W. Murdoch and A. G. Hay, Microbiology, 2013, 159, 621.
Biochemistry team for helpful discussions, and Tomasz 13 R. Wu, A. S. Reger, J. Cao, A. M. Gulick and D. Dunaway-
Kubowiz for analytical support.
Mariano, Biochemistry, 2007, 46, 14487.
This journal is © The Royal Society of Chemistry 2018
Green Chem.