The E-selectivity23 attained from R-isomerization provides
an excellent platform for the following important pericyclic
transformation. As shown in Scheme 3, isomerization of
cyclic 2-amido-diene 34a via acid-promoted R-isomerization
followed by ring-closure. Allenamide 32b demonstrated that
the thermal isomerization could be arrested with the gem-
dimethyl group in triene 33b impeding the ring-closure.
Unfortunatedly, attempted ring-closure of 32b at 200 °C led to
an unidentified product instead of 34b.
At last, this process could be rendered in tandem under
thermal conditions to access cyclic 2-amido-dienes 34a, 37, and
38 in good overall yields directly from respective allenamides
32a, 35, and 36 [Scheme 4]. It is noteworthy that these 6π-
Scheme 3. 3-Amido-Trienes and Pericyclic Ring-Closure
Scheme 4. Tandem R-Isomerization-Pericyclic Ring-Closure
R-allylated allenamide 29 under acidic conditions afforded
3-amido-triene 30 in 86% yield. With the E-selectivity, triene
30 is perfectly suited for a thermal 6π-electron electrocyclic
ring-closure24 to give cyclic diene 31. Although only in 35%
yield,25 examples of cyclic 2-amido-dienes such as 31 are more
rare.26 Allenamide 32a provided a good example of synthesizing
electron pericyclic ring-closures mostly took place at 135 °C,
which implies an accelerated process. This feature is consistent
with related ring-closures of 1,3,5-hexatrienes bearing a C3-
donating group.27,28
We have described here a regio- and stereoselective isomer-
ization of allenamides, leading to preparations of de noVo
2-amido-dienes and a tandem isomerization-6π-electron elec-
trocyclic ring-closure. Studies involving applications of these
dienes and this new tandem process as well as mechanistic
understanding of this allene-isomerization are underway.
(21) For examples, see: (a) Terada, A.; Murata, K. Bull. Chem. Soc.
Jpn. 1967, 40, 1644. (b) Overman, L. E.; Clizbe, L. A. J. Am. Chem. Soc.
1976, 98, 2352. (c) Oppolzer, W.; Bieber, L.; Francotte, E. Tetrahedron
Lett. 1979, 4537. (d) Smith, A. B., III.; Wexler, B. A.; Tu, C.-Y.;
Konopelski, J. P. J. Am. Chem. Soc. 1985, 107, 1308. (e) Schlessinger,
R. H.; Pettus, T. R. R.; Springer, J. P.; Hoogsteen, K. J. Org. Chem. 1994,
59, 3246. (f) Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1997, 119,
7165. (g) Huang, Y.; Iwama, T.; Rawal, V. H. J. Am. Chem. Soc. 2002,
124, 5950. (h) Robiette, R.; Cheboub-Benchaba, K.; Peeters, D.; Marchand-
Brynaert, J. J. Org. Chem. 2003, 68, 9809.
Acknowledgment. We thank the NIH [GM066055] for
support and Dr. Victor Young [University of Minnesota] for
X-ray structural analysis.
(22) There appears to be ∼5% of 1-amido-diene from γ-isomeriza-
tion.
(23) Without detailed studies, a rationale for lowering of the thermal
activation barrier of 1,3-H-shift is the stabilization of the bi-radical
intermediate provided by the nitrogen atom, assuming a radical intermediate
is considered electron deficient. Based on the this model, this stabilization
is direct when isomerizations take place at the R-position [see i], and
“vinylogous” for isomerizations at the γ-position [see ii]. Thus, thermal
isomerizations at the R-position were faster than at the γ-position.
Supporting Information Available: Experimental proce-
dures as well as NMR spectra, characterizations, and X-ray
structural files are available for all new compounds. This
material is available free of charge via the Internet at
OL900647S
(25) When attempting the ring-closure at temperature g180 °C, diene
30 slowly isomerized to the respective 1-amido diene.
(26) For examples, see: (a) Mart´ınez, R.; Jime´nez-Va´zquez, H. A.;
Delgado, F.; Tamariz, J. Tetrahedron 2003, 59, 481. (b) Wallace, D. J.;
Klauber, D. J.; Chen, C. Y.; Volante, R. P. Org. Chem. 2003, 5, 4749. (c)
Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B. Chem.-Eur. J. 2004, 10, 484.
(27) For theoretical studies on substituent effects on electrocyclic ring-
closure of 1,3,5-hexatrienes, see: (a) Spangler, C. W.; Jondahl, T. P.;
Spangler, B. J. Org. Chem. 1973, 38, 2478. (b) Guner, V. A.; Houk, K. N.;
Davies, I. A. J. Org. Chem. 2004, 69, 8024. (c) Yu, T.-Q.; Fu, Y.; Liu, L.;
Guo, G. X. J. Org. Chem. 2006, 71, 6157. (d) Duncan, J. A.; Calkins,
As one reviewer suggested, it is also possible that the nitrogen atom mediates
a polarized transition sate in which an increasing charge density at the
ꢀ-carbon could develop, leading to an N-acyl iminium ion-like character
with the migrating hydrogen behaving more like a proton. This charged
transition state instead of a neutral one should possess a lower thermal
activation barrier for the 1,3-H-shift. Finally, a rationale for the E-selectivity
from the thermal R-isomerization is that the pro-Z-TS experiences a greater
allylic strain than the pro-E-TS during the 1,3-H-shift, although we cannot
rule out equilibration from Z- to E-enamide after the initial isomerization.
(24) For reviews for pericyclic ring-closures, see: (a) Marvell, E. N.
Thermal Electrocyclic Reactions, Academic Press: New York, 1980. (b)
Okamura, W. H.; de Lera, A. R. In ComprehensiVe Organic Synthesis, Trost,
B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon Press: New York, 1991;
Vol. 5, pp 699-750. For reviews on ring-closure in natural product
synthesis, see (c) Pindur, U.; Schneider, G. H. Chem. Soc. ReV. 1994, 409.
(d) Beaudry, C. M.; Malerich, J. P.; Trauner, D. Chem. ReV. 2005, 105,
4757.
D. E. G.; Chavarha, M. J. Am. Chem. Soc. 2008, 130, 6740
.
(28) For examples of accelerated ring-closures of 1,3,5-hexatrienes, see:
(a) Barluenga, J.; Merino, I.; Palacios, F. Tetrahedron Lett. 1990, 31, 6713.
(b) Magomedov, N. A.; Ruggiero, P. L.; Tang, Y. J. Am. Chem. Soc. 2004,
126, 1624. (c) Tessier, P. E.; Nguyen, N.; Clay, M. D.; Fallis, A. G. J. Am.
Chem. Soc. 2006, 128, 4946. (e) Huntley, R. J.; Funk, R. L. Org. Lett.
2006, 8, 3403. (f) Yu, T.-Q.; Fu, Y.; Liu, L.; Guo, Q.-X. J. Org. Chem.
2006, 71, 6157. (g) Su¨nnemann, H. W.; Banwell, M. G.; de Meijere, A.
Eur. J. Org. Chem. 2007, 3879
.
2128
Org. Lett., Vol. 11, No. 10, 2009