Organic Letters
Letter
(6) (a) Chae, J.; Konno, T.; Ishihara, T.; Yamanaka, H. Chem. Lett.
2004, 33, 314−315. (b) Lin, R. Y.; Ding, S. T.; Shi, Z. Z.; Jiao, N. Org.
Lett. 2011, 13, 4498−4501.
(7) (a) Shimizu, R.; Egami, H.; Nagi, T.; Chae, J.; Hamashima, Y.;
Sodeoka, M. Tetrahedron Lett. 2010, 51, 5947−5949. (b) Yin, B.; Wang,
L. H.; Inagi, S.; Fuchigami, T. Tetrahedron 2010, 66, 6820−6825.
(c) Dolensky, B.; Nam, G.; Deng, W. P.; Narayanan, J.; Fan, J. F.; Kirk,
K. L. J. Fluorine Chem. 2004, 125, 501−508.
(8) (a) Ferry, A.; Billard, T.; Bacque, E.; Langlois, B. R. J. Fluorine
Chem. 2012, 134, 160−163. (b) Baudoux, J.; Salit, A. F.; Cahard, D.;
Plaquevent, J. C. Tetrahedron Lett. 2002, 43, 6573−6574.
(9) Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker,
T.; Ofial, A. R.; Mayr, H. J. Org. Chem. 2006, 71, 9088−9095.
(10) (a) Wen, L. L.; Shen, Q. L.; Wan, X. L.; Lu, L. J. Org. Chem. 2011,
76, 2282−2285. (b) Blay, G.; Fernandez, I.; Munoz, M. C.; Pedro, J. R.;
Vila, C. Chem. - Eur. J. 2010, 16, 9117−9122. (c) Shevchenko, N. E.;
Shmatova, O. I.; Balenkova, E. S.; Roschenthaler, G. V.; Nenajdenko, V.
G. Eur. J. Org. Chem. 2013, 2013, 2237−2245.
worse than when indole is used (92% yield and 87% ee in 22 h).
These findings indicate that indole reacts 2.6 times faster than
N-methylindole even though the latter compound is a better
nucleophile. This suggests that the PO···H−N hydrogen bond
is important both in terms of the reaction rate and the
enantioselectivity as previously reported.27
In summary, we demonstrated a successful application of chiral
electrostatically enhanced phosphoric acids to a Friedel−Crafts
alkylation to generate fluorinated indole derivatives. A wide
scope of substrates is tolerated, giving the corresponding prod-
ucts in good yields and enantioselectivities. A larger synthetic
scale reaction affording 250 mg of product was carried out with
little, if any, change in the performance of the reaction. Our
charged catalyst 2b was also found to outperform noncharged
analogues in terms of reaction rates by orders of magnitude, yet
still gave as good or better enantioselectivities.
(11) (a) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev.
2014, 114, 9047−9153. (b) You, S. L.; Cai, Q.; Zeng, M. Chem. Soc. Rev.
2009, 38, 2190−2201. (c) Poulsen, T. B.; Jorgensen, K. A. Chem. Rev.
2008, 108, 2903−2915. (d) Uraguchi, D.; Terada, M. J. Am. Chem. Soc.
2004, 126, 5356−5357.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(12) Liu, X. D.; Wang, Y.; Ma, H. Y.; Xing, C. H.; Yuan, Y.; Lu, L.
Tetrahedron 2017, 73, 2283−2289.
Experiment procedures, NMR spectra, and HPLC traces
(13) (a) Kasztelan, A.; Biedrzycki, M.; Kwiatkowski, P. Adv. Synth.
Catal. 2016, 358, 2962−2969. (b) Biedrzycki, M.; Kasztelan, A.;
Kwiatkowski, P. ChemCatChem 2017, 9, 2453−2456.
(14) Bandini, M.; Sinisi, R. Org. Lett. 2009, 11, 2093−2096.
(15) Wang, Y.; Yuan, Y.; Xing, C. H.; Lu, L. Tetrahedron Lett. 2014, 55,
1045−1048.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(16) (a) Nie, J.; Zhang, G. W.; Wang, L.; Fu, A. P.; Zheng, Y.; Ma, J. A.
Chem. Commun. 2009, 2356−2358. (b) Wang, T.; Zhang, G.-W.; Teng,
Y.; Nie, J.; Zheng, Y.; Ma, J.-A. Adv. Synth. Catal. 2010, 352, 2773−2777.
(17) Kaupmees, K.; Tolstoluzhsky, N.; Raja, S.; Rueping, M.; Leito, I.
Angew. Chem., Int. Ed. 2013, 52, 11569−11572.
Notes
(18) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7,
2583−2585.
The authors declare no competing financial interest.
(19) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem.,
Int. Ed. 2004, 43, 1566−1568. (b) Zhou, F. T.; Yamamoto, H. Angew.
Chem., Int. Ed. 2016, 55, 8970−8974.
ACKNOWLEDGMENTS
■
Generous support from the National Science Foundation (CHE-
1665392) and the Petroleum Research Fund (55631-ND4) as
administered by the American Chemical Society is gratefully
acknowledged.
(20) Samet, M.; Buhle, J.; Zhou, Y. W.; Kass, S. R. J. Am. Chem. Soc.
2015, 137, 4678−4680.
(21) Fan, Y.; Kass, S. R. Org. Lett. 2016, 18, 188−191.
(22) Ma, J.; Kass, S. R. Org. Lett. 2016, 18, 5812−5815.
(23) Fan, Y.; Kass, S. R. J. Org. Chem. 2017, 82, 13288−13296.
(24) Hermeke, J.; Toy, P. H. Tetrahedron 2011, 67, 4103−4109.
(25) (a) Clot-Almenara, L.; Rodriguez-Escrich, C.; Osorio-Planes, L.;
Pericas, M. A. ACS Catal. 2016, 6, 7647−7651. (b) Reid, J. P.;
Goodman, J. M. Chem. - Eur. J. 2017, 23, 14248−14260.
(26) Wang, Y. Z.; Liu, W.; Ren, W. L.; Shi, Y. Org. Lett. 2015, 17, 4976−
4979.
REFERENCES
■
(1) (a) Dixon, R. A. Nature 2001, 411, 843−847. (b) Li, S. M. Nat.
Prod. Rep. 2010, 27, 57−78.
(2) (a) Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev.
2010, 110, 4489−4497. (b) Zhang, M. Z.; Chen, Q.; Yang, G. F. Eur. J.
Med. Chem. 2015, 89, 421−441.
(27) Fu, A.; Meng, W.; Li, H.; Nie, J.; Ma, J. A. Org. Biomol. Chem.
2014, 12, 1908−1918.
(3) (a) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195−
7210. (b) Barluenga, J.; Rodriguez, F.; Fananas, F. J. Chem. - Asian J.
2009, 4, 1036−1048.
(4) (a) Melander, R. J.; Minvielle, M. J.; Melander, C. Tetrahedron
2014, 70, 6363−6372. (b) Rani, P.; Srivastava, V. K.; Kumar, A. Eur. J.
Med. Chem. 2004, 39, 449−452. (c) Zhang, H. C.; Ye, H.; Moretto, A. F.;
Brumfield, K. K.; Maryanoff, B. E. Org. Lett. 2000, 2, 89−92. (d) Du, Y.
F.; Liu, R. H.; Linn, G.; Zhao, K. Org. Lett. 2006, 8, 5919−5922.
(e) Radwan, M. A. A.; Ragab, E. A.; Sabry, N. M.; El-Shenawy, S. M.
Bioorg. Med. Chem. 2007, 15, 3832−3841. (f) Agarwal, A.; Srivastava, K.;
Puri, S. K.; Chauhan, P. M. S. Bioorg. Med. Chem. Lett. 2005, 15, 3133−
3136. (g) Chen, J.-B.; Jia, Y.-X. Org. Biomol. Chem. 2017, 15, 3550−
3567.
(5) (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881−
1886. (b) Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. ChemBioChem
2004, 5, 622−627. (c) Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev.
2004, 104, 1−16.
D
Org. Lett. XXXX, XXX, XXX−XXX