Boronic Acid-Based Inhibitors
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 9 2921
(10) Huangfu, D.; Maehr, R.; Guo, W.; Eijkelenboom, A.; Snitow, M.;
Chen, A. E.; Melton, D. A. Induction of pluripotent stem cells by
defined factors is greatly improved by small-molecule compounds.
Nat. Biotechnol. 2008, 26, 795–797.
Green, M. A.; Howell, K. L.; Jung, M.; Kwon, P.; Trogani, N.; Walker,
H. Inhibitors of human histone deacetylase: synthesis and enzyme and
cellular activity of straight chain hydroxamates. J. Med. Chem. 2002,
45, 753–757. (c) Belvedere, S.; Witter, D. J.; Yan, J.; Secrist, J. P.;
Richon, V.; Miller, T. A. Aminosuberoyl hydroxamic acids (ASHAs):
a potent new class of HDAC inhibitors. Bioorg. Med. Chem. Lett.
2007, 17, 3969–3971.
(11) (a) Suzuki, T.; Nagano, Y.; Kouketsu, A.; Matsuura, A.; Maruyama,
S.; Kurotaki, M.; Nakagawa, H.; Miyata, N. Novel inhibitors of human
histone deacetylases: design, synthesis, enzyme inhibition, and cancer
cell growth inhibition of SAHA-based non-hydroxamates. J. Med.
Chem. 2005, 48, 1019–1032. (b) Suzuki, T.; Kouketsu, A.; Itoh, Y.;
Hisakawa, S.; Maeda, S.; Yoshida, M.; Nakagawa, H.; Miyata, N.
Highly potent and selective histone deacetylase 6 inhibitors designed
based on a small-molecular substrate. J. Med. Chem. 2006, 49, 4809–
4812. (c) Itoh, Y.; Suzuki, T.; Kouketsu, A.; Suzuki, N.; Maeda, S.;
Yoshida, M.; Nakagawa, H.; Miyata, N. Design, synthesis, structure-
selectivity relationship, and effect on human cancer cells of a novel
series of histone deacetylase 6-selective inhibitors. J. Med. Chem. 2007,
50, 5425–5438. (d) Miller, T. A.; Witter, D. J.; Belvedere, S. Histone
deacetylase inhibitors. J. Med. Chem. 2003, 46, 5097–5116. (e) Paris,
M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase
inhibitors: from bench to clinic. J. Med. Chem. 2008, 51, 1505–1529.
(12) Jones, P.; Bottomley, M. J.; Casf´ı, A.; Cecchetti, O.; Ferrigno, F.; Lo
Surdo, P.; Ontoria, J. M.; Rowley, M.; Scarpelli, R.; Schultz-
Fademrecht, C.; Steinku¨hler, C. 2-Trifluoroacetylthiophenes, a novel
series of potent and selective class II histone deacetylase inhibitors.
Bioorg. Med. Chem. Lett. 2008, 18, 3456–3461.
(22) The IC50 values for nuclear HDACs, HDAC1, and HDAC2 were used
for the calculation of the potency shift value because HDAC1 and
HDAC2, which are localized in the nucleus, have been reported to be
important for the growth of cancer cells. (a) Lagger, G.; O’Carroll,
D.; Rembold, M.; Khier, H.; Tischler, J.; Weitzer, G.; Schuettengruber,
B.; Hauser, C.; Brunmeir, R.; Jenuwein, T.; Seiser, C. Essential
function of histone deacetylase 1 in proliferation control and CDK
inhibitor repression. EMBO J. 2002, 21, 2672–2681. (b) Huang, B. H.;
Laban, M.; Leung, C. H.; Lee, L.; Lee, C. K.; Salto-Tellez, M.; Raju,
G. C.; Hool, S. C. Inhibition of histone deacetylase 2 increases
apoptosis and p21Cip1/WAF1 expression, independent of histone deacety-
lase 1. Cell Death Differ. 2005, 12, 395–404. (c) Inoue, S.; Mai, A.;
Dyer, M. J.; Cohen, G. M. Inhibition of histone deacetylase class I
but not class II is critical for the sensitization of leukemic cells to
tumor necrosis factor related apoptosis-inducing ligand-induced apo-
ptosis. Cancer Res. 2006, 66, 6785–6792. (d) Witter, D. J.; Harrington,
P.; Wilson, K. J.; Chenard, M.; Fleming, J. C.; Haines, B.; Kral, A. M.;
Secrist, J. P.; Miller, T. A. Optimization of biaryl selective HDAC1&2
inhibitors (SHI-1:2). Bioorg. Med. Chem. Lett. 2008, 18, 726–731.
(e) Methot, J. L.; Chakravarty, P. K.; Chenard, M.; Close, J.; Cruz, J. C.;
Dahlberg, W. K.; Fleming, J.; Hamblett, C. L.; Hamill, J. E.; Harrington,
P.; Harsch, A.; Heidebrecht, R.; Hughes, B.; Jung, J.; Kenific, C. M.;
Kral, A. M.; Meinke, P. T.; Middleton, R. E.; Ozerova, N.; Sloman, D. L.;
Stanton, M. G.; Szewczak, A. A.; Tyagarajan, S.; Witter, D. J.; Secrist,
J. P.; Miller, T. A. Exploration of the internal cavity of histone deacetylase
(HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorg.
Med. Chem. Lett. 2008, 18, 973–978. (f) Methot, J. L.; Hamblett, C. L.;
Mampreian, D. M.; Jung, J.; Harsch, A.; Szewczak, A. A.; Dahlberg,
W. K.; Middleton, R. E.; Hughes, B.; Fleming, J. C.; Wang, H.; Kral,
A. M.; Ozerova, N.; Cruz, J. C.; Haines, B.; Chenard, M.; Kenific, C. M.;
Secrist, J. P.; Miller, T. A. SAR profiles of spirocyclic nicotinamide
derived selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorg. Med.
Chem. Lett. 2008, 18, 6104–6109. (g) Zhou, N.; Moradei, O.; Raeppel,
S.; Leit, S.; Frechette, S.; Gaudette, F.; Paquin, I.; Bernstein, N.; Bouchain,
G.; Vaisburg, A.; Jin, Z.; Gillespie, J.; Wang, J.; Fournel, M.; Yan, P. T.;
Tranchy-Bourget, M. C.; Kalita, A.; Lu, A.; Rahil, J.; MacLeod, A. R.;
Li, Z.; Besterman, J. M.; Delorme, D. Discovery of N-(2-aminophenyl)-
4-[(4-pyridin-3-ylpyrimidin-2-ylamino)methyl]benzamide (MGCD0103),
an orally active histone deacetylase inhibitor. J. Med. Chem. 2008, 51,
4072–4075.
(13) Schuetz, A.; Min, J.; Allali-Hassani, A.; Schapira, M.; Shuen, M.;
Loppnau, P.; Mazitschek, R.; Kwiatkowski, N. P.; Lewis, T. A.;
Maglathin, R. L.; McLean, T. H.; Bochkarev, A.; Plotnikov, A. N.;
Vedadi, M.; Arrowsmith, C. H. Human HDAC7 harbors a class IIa
histone deacetylase-specific zinc binding motif and cryptic deacetylase
activity. J. Biol. Chem. 2008, 283, 11355–11363.
(14) (a) Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol, C.; Ho, J. D.;
Jennings, A. J.; Luong, C.; Arvai, A.; Buggy, J. J.; Chi, E.; Tang, J.;
Sang, B. C.; Verner, E.; Wynands, R.; Leahy, E. M.; Dougan, D. R.;
Snell, G.; Navre, M.; Knuth, M. W.; Swanson, R. V.; McRee, D. E.;
Tari, L. W. Structural snapshots of human HDAC8 provide insights
into the class I histone deacetylases. Structure 2004, 12, 1325–1334.
(b) Vannini, A.; Volpari, C.; Filocamo, G.; Casavola, E. C.; Brunetti,
M.; Renzoni, D.; Charkravarty, P.; Paolini, C.; De Francesco, R.;
Gallinari, P.; Steinku¨hler, C.; Di Marco, S. Crystal structure of a
eukaryotic zinc-dependent histone deacetylase, human HDAC8, com-
plexed with a hydroxamic acid inhibitor. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 15064–15069. (c) Vannini, A.; Volpari, C.; Gallinari, P.;
Jones, P.; Mattu, M.; Carfi, A.; De Francesco, R.; Steinku¨hler, C.; Di
Marco, S. Substrate binding to histone deacetylases as shown by the
crystal structure of the HDAC8-substrate complex. EMBO Rep. 2007,
8, 879–884.
(23) (a) Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.;
Nixon, A.; Yoshida, M.; Wang, X.-F.; Yao, T.-P. HDAC6 is a
microtubule-associated deacetylase. Nature (London) 2002, 417, 455–
458. (b) Matsuyama, A.; Shimazu, T.; Sumida, Y.; Saito, A.;
Yoshimatsu, Y.; Seigneurin-Berny, D.; Osada, H.; Komatsu, Y.;
Nishino, N.; Khochbin, S.; Horinouchi, S.; Yoshida, M. In vivo
destabilization of dynamic microtubules by HDAC6-mediated deacety-
lation. EMBO J. 2002, 21, 6820–6831.
(15) Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind,
R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P. Structures of a
histone deacetylase homologue bound to the TSA and SAHA
inhibitors. Nature (London) 1999, 401, 188–193.
(16) Corminboeuf, C.; Hu, P.; Tuckerman, M. E.; Zhang, Y. Unexpected
deacetylation mechanism suggested by a density functional theory QM/
MM study of histone-deacetylase-like protein. J. Am. Chem. Soc. 2006,
128, 4530–4531.
(24) (a) Philipp, M.; Bender, M. L. Inhibition of serine proteases by
arylboronic acid. Proc. Natl. Acad. Sci. U.S.A. 1971, 68, 478–480.
(b) Flentke, G. R.; Munoz, E.; Huber, B. T.; Plaut, A. G.; Kettner,
C. A.; Bachovchin, W. W. Inhibition of dipeptidyl aminopeptidase
IV (DP-IV) by Xaa-boroPro dipeptides and use of the these inhibitors
to examine the role of DP-IV in T-cell function. Proc. Natl. Acad.
Sci. U.S.A. 1991, 88, 1556–1559.
(25) Kim, N. N.; Cox, J. D.; Baggio, R. F.; Emig, F. A.; Mistry, S. K.;
Harper, S. L.; Speicher, D. W.; Morris, S. M., Jr.; Ash, D. E.; Traish,
A.; Christiason, D. W. Probing erectile function: S-(2-boronoethyl)-
L-cysteine binds to arginase as a transition state analogue and enhances
smooth muscle relaxation in human penile corpus cavernosum.
Biochemistry 2001, 40, 2678–2688.
(26) (a) Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A. A.; Dick, L. R.;
Grenier, L.; Klunder, J. M.; Ma, Y.-T.; Plamondon, L.; Stein, R. L.
Potent and selective inhibitors of the proteasome: dipeptidyl boronic
acid. Bioorg. Med. Chem. Lett. 1998, 8, 333–338. (b) Adams, J.;
Palombella, V. J.; Sausville, E. A.; Johnson, J.; Destree, A.; Lazarus,
D. D.; Maas, J.; Pien, C.; S.; Prakash, S.; Elliott, P. J. Proteasome
inhibitors: a novel class of potent and effective antitumor agents.
Cancer Res. 1999, 59, 2615–2622.
(27) (a) Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.;
Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-
Goodrichi, M.; Campbell, H.; Mayo, J.; Boyd, M. R. Feasibility of a
high-flux anticancer drug screen using a diverse panel of cultured
human tumor cell lines. J. Natl. Cancer Inst. 1991, 83, 757–766. (b)
Yamori, T.; Sato, S.; Chikazawa, H.; Kadota, T. Anti-tumor efficacy
of paclitaxel against human lung cancer xenografts. Jpn. J. Cancer
(17) Yamamoto, Y.; Fujikawa, R.; Umemoto, T.; Miyaura, N. Iridium-
catalyzed hydroboration of alkenes with pinacolborane. Tetrahedron
2004, 60, 10695–10700.
(18) Falck, J. R.; Kumar, P. S.; Reddy, Y. K.; Zou, G.; Capdevila, J. H.
Stereospecific synthesis of EET metabolites via Suzuki-Miyaura
coupling. Tetrahedron Lett. 2001, 42, 7211–7212.
(19) Nishino, N.; Shivashimpi, G. M.; Soni, P. B.; Bhuiyan, M. P. I.; Kato,
T.; Maeda, S.; Nishino, T. G.; Yoshida, M. Interaction of aliphatic
cap group in inhibition of histone deacetylases by cyclic tetrapeptides.
Bioorg. Med. Chem. 2008, 16, 437–445.
(20) (a) Suzuki, T.; Yokozaki, H.; Kuniyasu, H.; Hayashi, K.; Naka, K.;
Ono, S.; Ishikawa, T.; Tahara, E.; Yasui, W. Effect of trichostatin A
on cell growth and expression of cell cycle- and apoptosis-related
molecules in human gastric and oral carcinoma cell lines. Int. J.
Cancer. 2000, 88, 992–997. (b) Fennell, K. A.; Miller, M. J. Synthesis
of amamistatin fragments and determination of their HDAC and
antitumor activity. Org. Lett. 2007, 9, 1683–1685. (c) Zhang, Y.;
Adachi, M.; Zhao, X.; Kawamura, R.; Imai, K. Histone deacetylase
inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycar-
bonyl)aminomethyl]benzamide and m-carboxycinnamic acid bis-
hydroxamide augment radiation-induced cell death in gastrointestinal
adenocarcinoma cells. Int. J. Cancer. 2004, 110, 301–308.
(21) (a) Wittich, S.; Scherf, H.; Xie, C.; Brosch, G.; Loidl, P.; Gerha¨user,
C.; Jung, M. Structure-activity relationships on phenylalanine-
containing inhibitors of histone deacetylase: in vitro enzyme inhibition,
induction of differentiation, and inhibition of proliferation in Friend
leukemic cells. J. Med. Chem. 2002, 45, 3296–3309. (b) Remiszewski,
S. W.; Sambucetti, L. C.; Atadja, P.; Bair, K. W.; Cornell, W. D.;