S. B. Hoyt et al. / Tetrahedron Letters 50 (2009) 1911–1913
1913
esis procedure would involve the use of catalyst 10 to effect bond
Supplementary data
formation between C3 and C4.
With the site of ring closure established, we next explored the
generality of this strategy. We were most interested in probing
the synthesis of electron-deficient benzazepinones, as clinical
agents that incorporated these would likely be more resistant to
metabolic oxidation. Additionally, electron-deficient substrates
might prove challenging for existing benzazepinone syntheses,
many of which proceed via oxidative mechanisms or cationic inter-
mediates. As shown in Table 2, substrates that incorporated fluo-
rine at the nascent 6, 7, 8, or 9 positions underwent metathesis
and subsequent hydrogenation in good yields to provide the corre-
sponding fluorinated benzazepinones (entries 1–4). Di- and triflu-
orinated substrates could also be employed (entries 5 and 6), as
could those bearing stronger electron-withdrawing groups such
as trifluoromethyl (entry 7), trifluoromethoxy (entry 8), and
methyl sulfone (entry 9). Note that many of these sequences were
conducted on multigram scale, thus confirming the practicality of
this approach.
A final example (entry 10) illustrates the one limitation of this
method that we have encountered thus far, namely its incompati-
bility with substrates that contain basic heteroatoms. Exposure of
the pyridinyl substrate shown to 5 mol % of 10, either at room tem-
perature in dichloromethane or at 70 °C in toluene, resulted in no
conversion to desired product. Similar results were obtained with
catalysts 8 and 9. The incompatibility of Rh-based RCM catalysts
with substrates that can coordinate to the metal center is, by
now, well documented, and likely accounts for the lack of reactiv-
ity observed in this case.16
Representative experimental procedures for the synthesis of 7-
fluoro-1,3,4,5-tetrahydro-1-benzazepin-2-one (Table 2, entry 2)
are included. Supplementary data associated with this article
References and notes
1. Watthew, J. W. H.; Stanton, J. L.; Desai, M.; Babiarz, J. E.; Finn, B. M. J. Med.
Chem. 1985, 28, 1511–1516.
2. (a) Smith, R. G.; Cheng, K.; Schoen, W. R.; Pong, S. S.; Hickey, G.; Jacks, T.; Butler,
B.; Chan, W. W. S.; Chaung, L. Y. P.; Judith, F.; Taylor, J.; Wyvratt, M. J.; Fisher, M.
H. Science 1993, 260, 1640–1643; (b) Schoen, W. R.; Pisano, J. M.; Prendergrast,
K.; Wyratt, M. J.; Fisher, M. H.; Cheng, K.; Chan, W. W. S.; Butler, B.; Smith, R. G.;
Ball, R. G. J. Med. Chem. 1994, 37, 897–906.
3. Tamura, S. Y.; Goldman, E. A.; Bergum, P. W.; Semple, J. E. Bioorg. Med. Chem.
Lett. 1999, 9, 2573–2578.
4. Hoyt, S. B.; London, C.; Gorin, D.; Wyvratt, M. J.; Fisher, M. H.; Abbadie, C.; Felix,
J. P.; Garcia, M. L.; Li, X.; Lyons, K. A.; McGowan, E.; MacIntyre, D. E.; Martin, W.
J.; Priest, B. T.; Ritter, A.; Smith, M. M.; Warren, V. A.; Williams, B. S.;
Kaczorowski, G. J.; Parsons, W. H. Bioorg. Med. Chem. Lett. 2007, 17,
4630–4634.
5. Floyd, D. M.; Kimball, S. D.; Krapcho, J.; Jagabandhu, D.; Turk, C. F.; Moquin, R.
V.; Lago, M. W.; Duff, K. J.; Lee, V. G.; White, R. E.; Ridgewell, R. E.; Moreland, S.;
Brittain, R. J.; Normandin, D. E.; Hedberg, S. A.; Cucinotta, G. G. J. Med. Chem.
1992, 35, 756–772.
6. Sattlegger, M.; Buschmann, H.; Przewosny, M.; Engelberger, W.; Koegel, B. Y.;
Schick, H. WO Patent 2003037873, 2003.
7. Hoyt, S. B.; London, C.; Ok, H.; Gonzalez, E.; Duffy, J. L.; Abbadie, C.; Dean, B.;
Felix, J. P.; Garcia, M. L.; Jochnowitz, N.; Karanam, B. V.; Li, X.; Lyons, K. A.;
McGowan, E.; MacIntyre, D. E.; Martin, W. J.; Priest, B. T.; Smith, M. M.;
Tschirret-Guth, R.; Warren, V. A.; Williams, B. S.; Kaczorowski, G. J.; Parsons, W.
H. Bioorg. Med. Chem. Lett. 2007, 17, 6172–6177.
In summary, we have developed a new synthesis of 1-ben-
zazepin-2-ones that employs ring-closing olefin metathesis as a
key step. This route delivers benzazepinone products in four
steps from commercially available starting materials, and can
be used preparatively on multigram scale. Importantly, it pro-
vides access to a range of substituted benzazepinones that are
otherwise difficult to synthesize. Future work will be aimed at
further expanding the reaction scope, and will be reported in
due course.
8. Horning, E. C.; Stromberg, V. L.; Lloyd, H. A. J. Am. Chem. Soc. 1952, 74, 5153–
5155.
9. (a) Eaton, P. E.; Carlson, G. R.; Lee, J. T. J. Org. Chem. 1973, 38, 4071–4073; (b)
Armstrong, J. D.; Eng, K.; Keller, J. L.; Purick, R. M.; Hartner, F. W.; Choi, W. B.;
Askin, D.; Volante, R. P. Tetrahedron Lett. 1994, 35, 3239–3242; (c) DeLuca, L.;
Giacomelli, G.; Porcheddu, A. J. Org. Chem. 2002, 67, 6272–6274.
10. Yang, B. H.; Buchwald, S. L. Org. Lett. 1999, 1, 35–37.
11. Fujita, K.; Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi, R. Org. Lett.
2004, 6, 2785–2788.
12. Chang, C. Y.; Yang, T. K. Tetrahedron: Asymmetry 2003, 14, 2081–2085.
13. Jackson, R. F. W.; Moore, R. J.; Dexter, C. S. J. Org. Chem. 1998, 63, 7875–
7884.
14. Lang, S.; Corr, M.; Muir, N.; Khan, T. A.; Schonebeck, F.; Murphy, J. A.; Payne, A.
H.; Williams, A. C. Tetrahedron Lett. 2005, 46, 4027–4030.
Acknowledgments
15. For a recent review, see: (a) Grubbs, R. H. Tetrahedron 2004, 60, 7117–7140; For
the use of RCM in the synthesis of 1-benzoxepin-2-ones, see: (b) Fürstner, A.;
Thiel, O. R.; Ackermann, L.; Schanz, H. J.; Nolan, S. P. J. Org. Chem. 2000, 65,
2204–2207.
The authors would like to thank Jason Cox, Patrick Shao, and Jo-
seph Duffy for their valuable assistance in proofreading this
document.
16. Compain, P. Adv. Synth. Catal. 2007, 349, 1829–1846.