Communication
ChemComm
sulfilimines, see: J. Wang, M. Frings and C. Bolm, Angew. Chem.,
Int. Ed., 2013, 52, 8661; and references therein.
7 For examples, see: (a) M. Harmata and P. Zheng, Org. Lett., 2007,
9, 5251; (b) M. Harmata, Y. Chen and C. L. Barnes, Org. Lett., 2007,
9, 4701; (c) C. Bolm and H. Villar, Synthesis, 2005, 1421; and references
therein; ; (d) T. R. Williams and D. J. Cram, J. Org. Chem., 1973, 38, 20.
´
8 J. L. Carcıa Ruano, I. Fernandez, M. del Prado Catalina and A. A. Cruz,
Tetrahedron: Asymmetry, 1996, 7, 3407.
9 G. Liu, D. A. Cogan and J. A. Ellman, J. Am. Chem. Soc., 1997, 119, 9913.
10 For recent reviews, see: (a) M. T. Robak, M. A. Herbage and J. A.
Ellman, Chem. Rev., 2010, 110, 3600; (b) F. Ferreira, C. Botuha,
´
F. Chernla and A. Perez-Luna, Chem. Soc. Rev., 2009, 38, 1162;
Scheme 3 Reductive desulfonylation.
(c) J. Liu and J. Hu, Future Med. Chem., 2009, 1, 875.
11 The 1,3-dipoles are generally defined as ‘‘having a p-electron system
consisting of two filled and one empty orbital and are analogous with
the allyl or propargyl anion’’. According to this criterion, N-tert-
butanesulfinyl imines do not belong to real 1,3-dipoles. See:
(a) F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Part
A: Structure and Mechanisms, Springer, New York, 2007, p. 873; (b) 1,3-
Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley, New York, 1984.
We finally turned our attention to the release of the masked
CF2H from PhSO2CF2. Upon treatment with Mg0 under mild
acidic conditions (HOAc–AcONa) in a DMF–H2O system,26 5a
and 6a could be conveniently converted into the difluoromethyl-
ated products 10 and 11 in high yields with excellent stereo- 12 For examples of quasi-1,3-dipoles, see: (a) E. Brunn and R. Huisgen,
Angew. Chem., Int. Ed. Engl., 1969, 8, 513; (b) R. Huisgen, E. Brunn,
R. Gilardi and I. Karle, J. Am. Chem. Soc., 1969, 91, 7766.
13 There are only two examples on the one-step cyclizations with the
chemical fidelity (Scheme 3). Since the CF2H group can act as a
more lipophilic hydrogen bond donor than typical donors such
as OH and SH, the CF2H-containing chiral cyclic sulfoximines
and sulfinamides represent interesting new structural motifs for
life science-related applications.
CQN-S subunit of sulfinimines forming cyclic sulfinamides. See:
(a) F. A. Davis, J. Qu, V. Srirajan, R. Joseph and D. D. Titus, Hetero-
cycles, 2002, 58, 251; (b) T. Andreassen, M. Lorentzen, L.-K. Hansen
and O. R. Gautun, Tetrahedron, 2009, 65, 2806.
In summary, we have shown that difluorinated N-TBS imi- 14 For selected reviews, see: (a) H. Pellisier and M. Santelli, Tetrahedron,
˜
´
´
2003, 59, 701; (b) D. Pena, D. Perez and E. Guitian, Heterocycles, 2007,
74, 89; (c) A. Bhunia, S. R. Yetra and A. T. Biju, Chem. Soc. Rev., 2012,
41, 3140; (d) P. M. Tadross and B. M. Stoltz, Chem. Rev., 2012, 112, 3550;
(e) C. M. Gampe and E. M. Carreira, Angew. Chem., Int. Ed., 2012,
51, 3766; ( f ) A. V. Dubrovskiy, N. A. Markina and R. C. Larock, Org.
Biomol. Chem., 2013, 11, 191.
nes can act as novel chiral quasi-1,3-dipoles in stereoselective
[3+2] cycloaddition reactions with arynes, which opens up a
new avenue for the synthesis of enantiopure cyclic sulfoximines.
The PhSO2CF2 group enhances the reactivity of the N-TBS imines
(due to its electron-withdrawing ability) and improves the stability
15 Y. Himeshima, T. Sonoda and H. Kobayashi, Chem. Lett., 1983, 1211.
of such imines against water (by increasing the hydrophobicity), 16 (a) C. Ni, L. Zhang and J. Hu, J. Org. Chem., 2008, 73, 5699;
(b) Y. Zeng, L. Zhang, Y. Zhao, C. Ni, J. Zhao and J. Hu, J. Am. Chem.
Soc., 2013, 135, 2955.
17 (a) K. Uneyama, Organofluorine Chemistry, Blackwell, Oxford, 2006,
thus facilitating the subsequent stereoselective [3+2] cycloaddition
reaction. On the other hand, the synthetic utility of these [3+2]
reaction products was conveniently demonstrated by their ready
transformation into cyclic sulfinamides via stereoselective de-tert-
butylation, as well as the subsequent transformation of the cyclic
sulfinamides into non-fluorinated ones by a formal nucleophilic
substitution of the PhSO2CF2 group.
p. 101; for recent examples, see: (b) J. M. Baskin, J. A. Prescher,
S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A. Lo,
J. A. Codelli and C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A., 2007,
104, 16793; (c) X. Shen, L. Zhang, Y. Zhao, L. Zhu, G. Li and J. Hu,
Angew. Chem., Int. Ed., 2011, 50, 2588.
18 The absolute configuration of 1d was determined by the X-ray
crystal structure of its analogue S2, and that of 5a was determined
by its X-ray crystal structure analysis (see ESI,† Section S3.1).19
.
Our work was supported by the National Basic Research
Program of China (2012CB215500 and 2012CB821600), the 19 CCDC 1009678 (2e), 1009680 (5a), 1009679 (4d), 1009681 (7c), 1009682
(S2), 1009683 (S3) and 1009684 (S4) contain the supplementary crystallo-
graphic data for this paper and its ESI†.
20 For discussion on their instability towards moisture, see: (a) H. Wang,
NNSF of China (21002115 and 21372246), Shanghai QMX
program (13QH1402400), and Chinese Academy of Sciences.
X. Zhao, Y. Li and L. Lu, Org. Lett., 2006, 8, 1379; (b) H. Chen, W. Yu,
X. H. Guo, W. D. Meng and Y. G. Huang, Chin. Chem. Lett., 2012, 23, 277.
21 For recent examples, see: (a) T. Nishimura, A. Noishiki, G. C. Tsui
Notes and references
1 M. Reggelin and C. Zur, Synthesis, 2000, 1.
and T. Hayashi, J. Am. Chem. Soc., 2012, 134, 5056; (b) H. Wang,
T. Jiang and M.-H. Xu, J. Am. Chem. Soc., 2013, 135, 971; (c) G. Yang
and W. Zhang, Angew. Chem., Int. Ed., 2013, 52, 7540; (d) F. Foschi,
A. Tagliabue, V. Mihali, T. Pilati, I. Pecnikaj and M. Penso, Org. Lett.,
2013, 15, 3686.
2 For reviews, see: (a) H. Okamura and C. Bolm, Chem. Lett., 2004,
33, 482; (b) H.-J. Gais, Heteroat. Chem., 2007, 18, 472; (c) C. Worch,
A. C. Mayer and C. Bolm, in Organosulfur Chemistry in Asymmetric
Synthesis, T. Toru and C. Bolm, Wiley-VCH, Weinheim, 2008.
´
3 For recent examples, see: (a) M. Frings, I. Thome and C. Bolm, 22 (a) M. Wills, R. J. Butlin, I. D. Linney and R. W. Gibson, J. Chem. Soc.,
Beilstein J. Org. Chem., 2012, 8, 1443; (b) X. Shen, W. Zhang,
L. Zhang, T. Luo, X. Wan, Y. Gu and J. Hu, Angew. Chem., Int. Ed.,
2012, 51, 6966; (c) X. Shen, W. Zhang, C. Ni, Y. Gu and J. Hu, J. Am.
Chem. Soc., 2012, 134, 16999.
Perkin Trans. 1, 1991, 3383; (b) M. M. Endeshaw, A. Bayer, L. K. Hansen
and O. R. Gautun, Eur. J. Org. Chem., 2006, 5249; (c) M. Harmata and
P. Zheng, Org. Lett., 2007, 9, 5251; (d) J. Coulomb, V. Certal, M.-H.
ˆ
Larraufie, C. Ollivier, J.-P. Corbet, G. Mignani, L. Fensterbank, E. Lacote
4 For more recent reviews, see: (a) U. Lu¨cking, Angew. Chem., Int. Ed.,
and M. Malacria, Chem. – Eur. J., 2009, 15, 10225.
2013, 52, 9399; (b) V. Bizet, R. Kowalczyk and C. Bolm, Chem. Soc. Rev., 23 For the removal of S-t-Bu group in acyclic sulfoximines, see:
¨
2014, 43, 2426; (c) X. Shen and J. Hu, Eur. J. Org. Chem., 2014, 4437.
5 (a) C. R. Johnson and C. W. Schroeck, J. Am. Chem. Soc., 1973, 95, 7418;
(b) J. Brandt and H. J. Gais, Tetrahedron: Asymmetry, 1997, 8, 909.
S. Gaillard, C. Papamicael, G. Dupas, F. Marsais and V. Levacher,
Tetrahedron, 2005, 61, 8138.
24 X. Shen, C. Ni and J. Hu, Helv. Chim. Acta, 2012, 95, 2043.
6 (a) O. Mancheno and C. Bolm, Chem. – Eur. J., 2007, 13, 6674; and 25 M. Daniel and R. A. Stockman, Tetrahedron, 2006, 62, 8869.
references therein; (b) for oxidation of enantioenriched 26 C. Ni and J. Hu, Tetrahedron Lett., 2005, 46, 8273.
;
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 10596--10599 | 10599