10.1002/anie.202002642
Angewandte Chemie International Edition
COMMUNICATION
Kim, S. Choi, S. H. Cho, Angew. Chem. Int. Ed. 2016, 55, 9690-9694; j)
S. A. Murray, J. C. Green, S. B. Tailor, S. J. Meek, Angew. Chem. Int.
Ed. 2016, 55, 9065-9069; k) J. Kim, K. Ko, S. H. Cho, Angew. Chem.
Int. Ed. 2017, 56, 11584-11588; l) W. Sun, L. Wang, C. Xia, C. Liu,
Angew. Chem. Int. Ed. 2018, 57, 5501-5505; m) N. Miralles, R. J. Maza,
E. Fernández, Adv. Synth. Catal. 2018, 360, 1306-1327; n) W.-X. Lv, Q.
Li, J.-L. Li, Z. Li, E. Lin, D.-H. Tan, Y.-H. Cai, W.-X. Fan, H. Wang,
Angew. Chem. Int. Ed. 2018, 57, 16544-16548; o) X. Liu, W. Ming, Y.
Zhang, A. Friedrich, T. B. Marder, Angew. Chem. Int. Ed. 2019, 58,
18923-18927; p) B. Zhao, Z. Li, Y. Wu, Y. Wang, J. Qian, Y. Yuan, Z.
Shi, Angew. Chem. Int. Ed. 2019, 58, 9448-9452; q) W. Wang, C. Ding,
Y. Li, Z. Li, Y. Li, L. Peng, G. Yin, Angew. Chem. Int. Ed. 2019, 58,
4612-4616; r) X.-Y. Bai, W. Zhao, X. Sun, B.-J. Li, J. Am. Chem. Soc.
2019; s) X. Liu, W. Ming, A. Friedrich, F. Kerner, T. B. Marder, Angew.
Chem. Int. Ed. 2020, 59, 304-309.
With 2-octene, 2-heptene, and 2-pentene, the corresponding
1,1-diborylalkanes were obtained in 51–73% yields. A yield
comparable to that with 2-octene was also gained from 4-
octene, illustrating the efficiency of our catalytic system.
Ethylidenecyclohexane afforded 37 in 65% yield, and β-methyl
styrene, which was reluctant to isomerize, underwent efficient
remote 1,1-diboration and gave the terminal 1,1-diboration
product 41 in 66% isolated yield. Moreover, internal alkenes with
a benzyl ether group undertook the 1,1-dibroation without
problems and afforded the corresponding product 47 in 63%
yield. In addition, sterically hindered (E)-1-isopropyl-4-(2-
methylpent-3-en-1-yl)benzene, and an alkene derived from
helional produced 48 and 49 in yields up to 69%. In the case of
(E)-2,6-dimethylundeca-2,8-diene, which contains two internal
double bonds, selective reaction at the less hindered double
bond was achieved, with an acceptable yield of product 50.
[2]
[3]
[4]
a) D. S. Matteson, R. J. Moody, Organometallics 1982, 1, 20-28; b) Z.-
Q. Zhang, C.-T. Yang, L.-J. Liang, B. Xiao, X. Lu, J.-H. Liu, Y.-Y. Sun, T.
B. Marder, Y. Fu, Org. Lett. 2014, 16, 6342-6345; c) J. R. Coombs, L.
Zhang, J. P. Morken, Org. Lett. 2015, 17, 1708-1711; d) Y. Lee, J. Park,
S. H. Cho, Angew. Chem. Int. Ed. 2018, 57, 12930-12934.
In summary, we have developed an earth-abundant zirconium-
based catalytic system that enabled the first selective H2-
acceptorless 1,1-diboration of bulk and inexpensive alkenes with
borane to be realized. Our methodology avoids the requirement
of excess amount of another alkene as H2-acceptor, thereby,
making our strategy both atom-economical and cost-efficient.
Compared to the limited substrates scope of the existing H2-
acceptor system, many aryl alkenes, as well as long-chain
aliphatic alkenes, converted smoothly into various 1,1-
diborylalkanes, which are excellent platforms for complex
molecules. More importantly, using our methodology, the
unprecedented remote 1,1-diboration of internal alkenes were
also realized.
a) T. Hata, H. Kitagawa, H. Masai, T. Kurahashi, M. Shimizu, T.
Hiyama, Angew. Chem. Int. Ed. 2001, 40, 790-792; b) M. Shimizu, M.
Schelper, I. Nagao, K. Shimono, T. Kurahashi, T. Hiyama, Chem. Lett.
2006, 35, 1222-1223; c) H. Ito, K. Kubota, Org. Lett. 2012, 14, 890-893;
d) T. C. Atack, S. P. Cook, J. Am. Chem. Soc. 2016, 138, 6139-6142.
a) K. Endo, M. Hirokami, T. Shibata, Synlett 2009, 2009, 1331-1335; b)
R. Barbeyron, E. Benedetti, J. Cossy, J. J. Vasseur, S. Arseniyadis, M.
Smietana, Tetrahedron 2014, 70, 8431-8452; c) S. Lee, D. Li, J. Yun,
Chem. Asian J. 2014, 9, 2440-2443; d) Z. Q. Zuo, Z. Huang, Org.
Chem. Front. 2016, 3, 434-438; e) G. Gao, Z. Kuang, Q. Song, Org.
Chem. Front. 2018, 5, 2249-2253.
[5]
[6]
C. Wiesauer, W. Weissensteiner, Tetrahedron: Asymmetry 1996, 7, 5-8.
a) H. Abu Ali, I. Goldberg, D. Kaufmann, C. Burmeister, M. Srebnik,
Organometallics 2002, 21, 1870-1876; b) A. J. Wommack, J. S.
Kingsbury, Tetrahedron Lett. 2014, 55, 3163-3166; c) H. Li, X.
Shangguan, Z. Zhang, S. Huang, Y. Zhang, J. Wang, Org. Lett. 2014,
16, 448-451; d) A. B. Cuenca, J. Cid, D. García-López, J. J. Carbó, E.
Fernández, Org. Biomol. Chem. 2015, 13, 9659-9664.
Acknowledgements
[7]
a) S. H. Cho, J. F. Hartwig, Chem. Sci. 2014, 5, 694-698; b) W. N.
Palmer, J. V. Obligacion, I. Pappas, P. J. Chirik, J. Am. Chem. Soc.
2016, 138, 766-769.
We are grateful to the National Natural Science Foundation of
China (91845108, 21901247, 21902167) and Natural Science
Foundation of Jiangsu Province (BK20180246) for generous
[8]
[9]
T. Yamamoto, A. Ishibashi, M. Suginome, Org. Lett. 2019, 21, 6235-
6240.
a) L. Wang, T. Zhang, W. Sun, Z. He, C. Xia, Y. Lan, C. Liu, J. Am.
Chem. Soc. 2017, 139, 5257-5264; b) Z. He, Q. Zhu, X. Hu, L. Wang, C.
Xia, C. Liu, Org. Chem. Front. 2019, 6, 900-907; c) Z. He, M. Fan, J. Xu,
Y. Hu, L. Wang, X. Wu, C. Xia, C. Liu, Chin. J. Org. Chem. 2019, 39,
3438-3445.
financial support. We would also like to thank Prof. Senmiao Xu,
Prof. Qiang Liu, Prof. Chao Liu, Prof. Lin He and Dr. Jingjing Wu
for helpful suggestions.
[10] L. Li, T. Gong, X. Lu, B. Xiao, Y. Fu, Nat. Commun. 2017, 8, 345.
[11] a) S. A. Westcott, H. P. Blom, T. B. Marder, R. T. Baker, J. Am. Chem.
Soc. 1992, 114, 8863-8869; b) K. Burgess, W. A. Van der Donk, S. A.
Westcott, T. B. Marder, R. T. Baker, J. C. Calabrese, J. Am. Chem. Soc.
1992, 114, 9350-9359; c) S. A. Westcott, T. B. Marder, R. T. Baker,
Organometallics 1993, 12, 975-979; d) C. N. Garon, D. I. McIsaac, C.
M. Vogels, A. Decken, I. D. Williams, C. Kleeberg, T. B. Marder, S. A.
Westcott, Dalton Trans. 2009, 1624-1631; e) J. Y. Wu, B. Moreau, T.
Ritter, J. Am. Chem. Soc. 2009, 131, 12915-12917; f) K.-N. T. Tseng, J.
W. Kampf, N. K. Szymczak, ACS. Catal. 2014, 5, 411-415; g) G. Wang,
X. Liang, L. Chen, Q. Gao, J. G. Wang, P. Zhang, Q. Peng, S. Xu,
Angew. Chem. Int. Ed. 2019, 58, 8187-8191; h) X. Chen, Z. Y. Cheng,
Z. Lu, ACS. Catal. 2019, 9, 4025-4029.
Conflict of interest
The authors declare no conflict of interest
Keywords: zirconium • 1,1-diborylalkanes • H2-acceptorless •
alkenes • boration
[1]
a) J. C. Lee, R. McDonald, D. G. Hall, Nat Chem 2011, 3, 894-899; b) J.
Takaya, N. Iwasawa, ACS. Catal. 2012, 2, 1993-2006; c) X. Feng, H.
Jeon, J. Yun, Angew. Chem. Int. Ed. 2013, 52, 3989-3992; d) H. Li, Z.
Zhang, X. Shangguan, S. Huang, J. Chen, Y. Zhang, J. Wang, Angew.
Chem. Int. Ed. 2014, 53, 11921-11925; e) A. Morinaga, K. Nagao, H.
Ohmiya, M. Sawamura, Angew. Chem. Int. Ed. 2015, 54, 15859-15862;
f) W. B. Reid, J. J. Spillane, S. B. Krause, D. A. Watson, J. Am. Chem.
Soc. 2016, 138, 5539-5542; g) A. Fawcett, D. Nitsch, M. Ali, J. M.
Bateman, E. L. Myers, V. K. Aggarwal, Angew. Chem. Int. Ed. 2016, 55,
14663-14667; h) E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A.
Westcott, T. B. Marder, Chem. Rev. 2016, 116, 9091-9161; i) W. Jo, J.
[12] a) R. B. Coapes, F. E. Souza, R. L. Thomas, J. J. Hall, T. B. Marder,
Chem. Commun. 2003, 614-615; b) I. A. Mkhalid, R. B. Coapes, S. N.
Edes, D. N. Coventry, F. E. Souza, R. L. Thomas, J. J. Hall, S. W. Bi, Z.
Lin, T. B. Marder, Dalton Trans. 2008, 1055-1064; c) M. Morimoto, T.
Miura, M. Murakami, Angew. Chem. Int. Ed. 2015, 54, 12659-12663.
[13] a) L. Zhang, Z. Huang, J. Am. Chem. Soc. 2015, 137, 15600-15603; b)
H. A. Wen, L. Zhang, S. Z. Zhu, G. X. Liu, Z. Huang, ACS. Catal. 2017,
7, 6419-6425.
4
This article is protected by copyright. All rights reserved.