ORGANIC
LETTERS
2001
Vol. 3, No. 24
3855-3858
Synthesis of 3-Pyrrolines, Annulated
3-Pyrrolines, and Pyrroles from r-Amino
Allenes
R. Karl Dieter* and Huayun Yu
Howard L. Hunter Chemistry Laboratory, Clemson UniVersity,
Clemson, South Carolina 29634-0973
Received August 27, 2001
ABSTRACT
r-Amino allenes, readily prepared from reaction of r-(N-carbamoyl)alkylcuprates with propargyl substrates followed by N-Boc deprotection,
are converted in high yields to pyrrolines with AgNO . Palladium-catalyzed cyclization of amino allenes affords either the pyrroline or the
3
pyrrole depending on reaction conditions and provides for introduction of an aryl substituent at the C-3 position of the pyrroline or pyrrole.
Enantioenriched pyrrolines are readily prepared from scalemic propargyl alcohols.
Pyrroles1 and pyrrolines2 are important classes of heterocyclic
compounds, and many synthetic routes are available for their
preparation.3 Many procedures, however, are limited in terms
of substituents and substitution patterns. With increasing
frequency, the transition-metal-promoted cyclization of a
heteroatom onto an allene moiety provides a powerful
strategy for heterocyclic synthesis.4 Furan formation via silver
ion-catalyzed cyclization of R-hydroxy allenes occurs in a
highly regio- and stereoselective manner.5 Silver ion-
catalyzed cyclization of a nitrogen functionality onto a
proximate olefinic site has been employed for the synthesis
of nitrogen heterocycles. Although these cyclizations pro-
ceeded cleanly for a range of nitrogen-containing function-
alities, many of the cyclizations proceeded in an exocyclic
fashion to afford 2-vinyl-substituted ring systems.6 Neverthe-
less, several recent reports describe silver nitrate-promoted
endo cyclization processes involving either a benzylamine
functionality,7a sulfonamides,7b or acyclic amino allenes.7c
Similarly, the vast majority of palladium-promoted cycliza-
tions of nitrogen functionalities onto adjacent double bonds
involve nitrogen centers containing electron-withdrawing
(1) For biologically important pyrroles, see: (a) Lainton, J. A. H.;
Huffman, J. W.; Martin, B. R.; Compton, D. R. Tetrahedron Lett. 1995,
36, 1401. (b) De Leon, C. Y.; Ganem, B. Tetrahedron 1997, 53, 7731. (c)
Jacobi, P. A.; Coutts, L. D.; Guo, J. S.; Hauck, S. I.; Leung, S. H. J. Org.
Chem. 2000, 65, 205. (d) Gupton, J. T.; Krumpe, K. E.; Burnham, B. C.;
Dwornik, K. A.; Petrich, S. A.; Du, K. X.; Bruce, M. A.; Vu, P.; Vargas,
M.; Keertikar, K. M.; Hosein, K. N.; Jones, C. R.; Sikorski, J. A.
Tetrahedron 1998, 54, 5075. (e) Anderson, W. K.; Milowsky, A. S. J. Med.
Chem. 1987, 30, 2144. For the chemistry of macrocycles containing pyrrole
units, see: (f) Sessler, J. L.; Weghorn, S. J. Expanded, Contracted &
Isomeric Porphyrins; Elsevier Science, Ltd.: Oxford, 1997. For pyrrole-
based dyes, see: (g) Thoresen, L. H.; Kim, H.; Welch, M. B.; Burghart,
A.; Burgess, K. Synlett 1998, 1276.
(4) For reviews, see: (a) Frederickson, M.; Grigg, R. Org. Prep. Proced.
Int. 1997, 29, 63. (b) Tamaru, Y.; Kimura, M. Synlett 1997, 749. (c) Ojima,
I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. ReV. 1996, 96, 635.
(d) Zimmer, R.; Dinesh, Cu.; Nandanan, E.; Khan, F. A. Chem. ReV. 2000,
100, 3067.
(2) For use of pyrrolines in aza sugar synthesis see: Huwe, C. M.;
Blechert, S. Tetrahedron Lett. 1995, 36, 1621.
(3) (a) Bean, G. P. In The Chemistry of Heterocyclic Compounds; Jones,
A. R., Ed.; Wiley: New York, 1990; Vol. 48, Part 1, Chapter 2, p 105. (b)
Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 1998, 615. For the syntheses
of 3-pyrrolines, see: (c) Breuil-Desvergnes, V.; Compain, P.; Vate`le, J.-
M.; Gore´, J. Tetrahedron Lett. 1999, 40, 5009. (d) Jayaprakash, K.;
Venkatachalam, C. S.; Balasubramanian, K. K. Tetrahedron Lett. 1999, 40,
6493. (e) Burley, I.; Hewson, A. T. Tetrahedron Lett. 1994, 38, 7099. (f)
Kinder, F. R., Jr.; Jarosinski, M. A.; Anderson, W. K. J. Org. Chem. 1991,
56, 6475. (g) Padwa, A.; Norman, B. H. Tetrahedron Lett. 1988, 29, 3041.
(h) Anderson, W. K.; Milowsky, A. S. J. Org. Chem. 1985, 50, 5423.
(5) (a) Marshall, J. A.; Pinney, K. G. J. Org. Chem. 1993, 58, 7180. (b)
Walkup, R. D.; Guan, L. G.; Mosher, M. D.; Kim, S. W.; Kim, Y. S. Synlett
1993, 88. (c) Marshall, J. A. Chem. ReV. 1996, 96, 31. (d) Muller, T. E.;
Beller, M. Chem. ReV. 1998, 98, 693.
(6) (a) Gallagher, T. J. Chem. Soc., Chem. Commun. 1986, 114. (b) Fox,
D. N. A.; Gallagher, T. Tetrahedron 1990, 46, 4697.
(7) (a) Amombo, M. O.; Hausherr, A.; Reissig, H.-U. Synlett 1999, 1871.
(b) Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Osawa, E.; Yamaoka, Y.;
Fujii, N.; Ibuka, T. J. Org. Chem. 1999, 64, 2992. (c) Claesson, A.; Sahlberg,
C.; Luthman, K. Acta Chem. Scand. Ser. B 1979, B33, 309.
10.1021/ol016654+ CCC: $20.00 © 2001 American Chemical Society
Published on Web 10/31/2001