a β-form (Scheme 1).12 The corresponding glycosyl sulfo-
nium ions 3 were prepared by the reaction of diorgano-
sulfide (R1SR2) and the highly reactive glycosyl triflate 2
that was electrochemically generated from thioglycoside 1
at -78 °C.
Scheme 1. Preparation of Glycosyl Sulfonium Ions 3 via Elec-
trochemically Generated Glycosyl Triflate 2
1H NMR spectra of glycosyl triflate 2 and that of
glycosyl sulfonium ion 3a are shown in Figure 1. Although
it was not possible to determine the structure of the minor
product due to their instability,13 R-triflate was obtained
exclusively (Figure 1a). The addition of dimethyl sulfide
(Me2S) toa solution of glycosyl triflate2 gavea single set of
peaks of the β-isomer (Figure 1b). On the other hand,
glycosyl sulfonium ion 3b, which was obtained by the reac-
tion with unsymmetrical methyl phenyl sulfide (MeSPh),
exhibited two sets of peaks. These two species are attrib-
uted to the two diastereomers of glycosyl sulfonium ion 3b,
because the sulfur atom is a stereogenic center (Figure 1c).
them to R-selective glycosylations.9 These findings prompted
us and other groups to investigate the stability and reac-
tivity of glycosyl sulfonium ions.10,11 We developed a novel
method for preparing glycosyl sulfonium ions using the
reaction of electrochemically generated glycosyl triflates
with diorganosulfides. On the basis of these results, it is
reasonable to assume that stability and reactivity of gly-
cosyl sulfonium ions can be tunedby changing substituents
on the sulfur atom. In this study, we demonstrate that
glycosyl sulfonium ions bearing appropriate substituents
on the sulfur atom can serve as storable intermediates for
glycosylation.
Thioglycoside 1, which has a N-phthalimide (N-Phth)
group, was chosen as a glycosyl donor because this group
could be expected to suppress formation of the orthoester
and control the stereochemistry of generating glycosides in
(4) Observation of highly reactive glycosylation intermediates other
than glycosyl triflates: (a) Gildersleeve, J.; Pascal, R. A.; Kahne, D. J.
Am. Chem. Soc. 1998, 120, 5961. (b) Garcia, B. A.; Gin, D. Y. J. Am.
Chem. Soc. 2000, 122, 4269.
(5) (a) Nokami, T.; Shibuya, A.; Tsuyama, H.; Bowers, A. A.; Crich,
D.; Suga, S.; Yoshida, J. J. Am. Chem. Soc. 2007, 128, 10922. (b)
Nokami, T.; Tsuyama, H.; Shibuya, A.; Nakatsutsumi, T.; Yoshida, J.
Chem. Lett. 2008, 37, 942. (c) Nokami, T.; Shibuya, A.; Yoshida, J.
Trends Glycosci. Glycotechnol. 2008, 20, 175.
(6) (a) Eby, R.; Schuerch, C. Carbohydr. Res. 1974, 34, 79. (b) Eby,
ꢁ
R.; Schuerch, C. Carbohydr. Res. 1976, 50, 203. (c) Marousek, V.; Lucas,
T. J.; Wheat, P. E.; Schuerch, C. Carbohydr. Res. 1978, 60, 85. (d) Eby,
R.; Schuerch, C. Carbohydr. Res. 1979, 77, 61. (e) Eby, R. Carbohydr.
Res. 1979, 70, 75. (f) Eby, R.; Schuerch, C. Carbohydr. Res. 1982, 102,
131.
€
(7) (a) Schmidt, R. R.; Rucker, E. Tetrahedron Lett. 1980, 21, 1421.
ꢀ
(b) Braccini, I.; Derouet, C.; Esnault, J.; Herve du Penhoat, C.; Mallet,
J.-M.; Michon, V.; Sinay, P. Carbohydr. Res. 1993, 246, 23.
(8) West, A. C.; Schuerch, C. J. Am. Chem. Soc. 1973, 95, 1333.
(9) (a) Kim, J.-H.; Yang, H.; Boons, G. J. Angew. Chem., Int. Ed.
2005, 44, 947. (b) Kim, J.-H.; Yang, H.; Park, J.; Boons, G. J. J. Am.
Chem. Soc. 2005, 127, 12090. (c) Park, J.; Kawatkar, S.; Kim, J.-H.;
Boons, G. J. Org. Lett. 2007, 9, 1959. (d) Boltje, T. J.; Kim, J.-H.; Park,
J.; Boons, G. J. Nat. Chem. 2010, 2, 552. (e) Boltje, T. J.; Kim, J.-H.;
Park, J.; Boons, G. J. Org. Lett. 2011, 13, 284.
Figure 1. 1H NMR spectra at -80 °C: (a) glycosyl triflate 2, (b)
glycosyl sulfonium ion 3a, and (c) glycosyl sulfonium ion 3b.
Electrospray ionization (ESI) and cold-spray (CS) TOF
MS analyses were also performed to confirm the genera-
tion of the glycosyl sulfonium ions. Although the parent
peak was observed in addition to several fragments in the
case of glycosyl sulfonium ion 3a, only fragment peaks
were observed for 3b in both ESI and CS-TOF MS spectra.
These results indicate that glycosyl sulfonium ion 3b is less
stable than 3a. (For 13C NMR, H-H-COSY, HMQC, and
ESI/CS-TOF MS spectra, see the Supporting Information).
The thermal stability of glycosyl sulfonium ions 3 was
particularly important in helping us to optimize the reac-
tion conditions in an efficient manner. We performed
(10) Nokami, T.; Shibuya, A.; Manabe, S.; Ito, Y.; Yoshida, J.
Chem.;Eur. J. 2009, 15, 2252.
(11) (a) Fascione, M. A.; Adhead, S. J.; Stalford, S. A.; Kilner, C. A.;
Leach, A. G.; Turnbull, W. B. Chem. Commun. 2009, 5841. (b) Stalford,
S. A.; Kilner, C. A.; Leach, A. G.; Turnbull, W. B. Org. Biomol. Chem.
2009, 7, 4842. (c) Geng, Y.; Ye, X.-S. Synlett 2010, 2506. (d) Fascione,
M. A.; Turnbull, W. B. Beilstein J. Org. Chem. 2010, 6, doi: 10.3762/
bjoc.6.19. Published Online: Feb 22, 2010.
(12) Examples of the synthesis of oligosaccharides containing 2-ami-
no-2-deoxy glucose: (a) Nicolaou, K. C.; Bockovich, N. J.; Carcanague,
D. R.; Hummel, C. W.; Even, L. F. J. Am. Chem. Soc. 1992, 114, 8701.
(b) Ikeshita, S.; Sakamoto, A.; Nakahara, Y.; Nakahara, Y.; Ogawa, T.
Tetrahedron Lett. 1994, 35, 3123. (c) Solomon, D.; Fridman, M.; Zhang,
J.; Baasov, T. Org. Lett. 2001, 3, 4311. (d) Fridman, M.; Solomon, D.;
Yogev, S.; Baasov, T. Org. Lett. 2002, 4, 281. (e) Yang, F.; He, H.; Du,
Y. Tetrahedron Lett. 2002, 43, 7561. (f) Manabe, S.; Ishii, K.; Ito, Y. J.
Org. Chem. 2007, 72, 6107. (g) Yang, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc.
2009, 131, 12076.
(13) R-Glycosyl triflate 2 is also unstable and gradually decomposes
in a freezer at -80 °C.
Org. Lett., Vol. 13, No. 6, 2011
1545