Organic Letters
Letter
(h) Favalli, N.; Bassi, G.; Scheuermann, J.; Neri, D. FEBS Lett. 2018,
592, 2168. (i) Neri, D.; Lerner, R. A. Annu. Rev. Biochem. 2018, 87,
479.
that dsDNA through the chemistry reaction exhibited
efficiency similar to that of native dsDNA (see SI, DNA
damage evaluation), and Sanger sequencing also indicated that
dsDNA through chemistry reactions had the expected DNA
sequence as in the case of native dsDNA.
(3) Selected papers on DNA reactions: (a) Khan, S. I.; Grinstaff, M.
W. J. Am. Chem. Soc. 1999, 121, 4704. (b) Li, X.; Liu, D. R. Angew.
Chem., Int. Ed. 2004, 43, 4848. (c) Chouikhi, D.; Ciobanu, M.;
Zambaldo, C.; Duplan, V.; Barluenga, S.; Winssinger, N. Chem. - Eur.
J. 2012, 18, 12698. (d) Franzini, R. M.; Samain, F.; Abd Elrahman,
M.; Mikutis, G.; Nauer, A.; Zimmermann, M.; Scheuermann, J.; Hall,
J.; Neri, D. Bioconjugate Chem. 2014, 25, 1453. (e) Satz, A. L.; Cai, J.;
Chen, Y.; Goodnow, R.; Gruber, F.; Kowalczyk, A.; Petersen, A.;
Naderi-Oboodi, G.; Orzechowski, L.; Strebel, Q. Bioconjugate Chem.
2015, 26, 1623. (f) MacConnell, A. B.; McEnaney, P. J.; Cavett, V. J.;
Paegel, B. M. ACS Comb. Sci. 2015, 17, 518. (g) Ding, Y.; Clark, M. A.
ACS Comb. Sci. 2015, 17, 1. (h) Satz, A. L.; Cai, J.; Chen, Y.;
Goodnow, R.; Gruber, F.; Kowalczyk, A.; Petersen, A.; Naderi-
Oboodi, G.; Orzechowski, L.; Strebel, Q. Bioconjugate Chem. 2015,
26, 1623. (i) Ding, Y.; Franklin, G. J.; DeLorey, J. L.; Centrella, P. A.;
Mataruse, S.; Clark, M. A.; Skinner, S. R.; Belyanskaya, S. ACS Comb.
Sci. 2016, 18, 625. (j) Malone, M. L.; Paegel, B. M. ACS Comb. Sci.
2016, 18, 182. (k) Li, Y.; Gabriele, E.; Samain, F.; Favalli, N.;
Sladojevich, F.; Scheuermann, J.; Neri, D. ACS Comb. Sci. 2016, 18,
438. (l) Defrancq, E.; Messaoudi, S. ChemBioChem 2017, 18, 426.
(m) Fan, L.; Davie, C. P. ChemBioChem 2017, 18, 843. (n) Lu, X.;
Roberts, S. E.; Franklin, G. J.; Davie, C. P. MedChemComm 2017, 8,
1614. (o) Thomas, B.; Lu, X.; Birmingham, W. R.; Huang, K.; Both,
P.; Reyes Martinez, J. E.; Young, R. J.; Davie, C. P.; Flitsch, S. L.
ChemBioChem 2017, 18, 858. (p) Lu, X.; Fan, L.; Phelps, C. B.; Davie,
C. P.; Donahue, C. P. Bioconjugate Chem. 2017, 28, 1625. (q) Wang,
J.; Lundberg, H.; Asai, S.; Martín-Acosta, P.; Chen, J. S.; Brown, S.;
Farrell, W.; Dushin, R. G.; O’Donnell, C. J.; Ratnayake, A. S.;
Richardson, P.; Liu, Z. Q.; Qin, T.; Blackmond, D. G.; Baran, P. S.
Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 6404. (r) Wang, X.; Sun, H.;
Liu, J.; Dai, D.; Zhang, M.; Zhou, H.; Zhong, W.; Lu, X. Org. Lett.
In conlusion, two distinct methodologies to construct
sulfonamides in the generation of DELs have been presented.
We have expanded the scope of sulfonamide formation for
DEL synthesis by expanding the scope and types of amines and
sulfonamide diversity that can achieve acceptable levels of
prevalidation and presented a way to form sulfonamides from
DNA conjugated sulfinic acids. This methodology provides
reagents that are not only stable in water in comparison to
sulfonyl chlorides but also can even be stored in water for
weeks providing more robust reproducibility and improved
operational simplicity. Future library generation with this
methodology relies on the availability of large sets of
monofunctional, bifunctional, and trifunctional sulfinic acids
and/or sodium sulfinates. Even though this method has
expanded the scope of aryl sulfonamide formation, the
formation of alkyl sulfonamides remains problematic. Our
future studies will aim at solving this limitation as well as
utilizing these methods in library production.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge at
General procedures for synthesis and characterization
̈
2018, 20, 4764. (s) Kolmel, D. K.; Loach, R. P.; Knauber, T.;
Flanagan, M. E. ChemMedChem 2018, 13, 2132. (t) Du, H.-C.;
Simmons, N.; Faver, J. C.; Yu, Z.; Palaniappan, M.; Riehle, K.;
Matzuk, M. M. Org. Lett. 2019, 21, 2194. (u) Flood, D. T.; Asai, S.;
Zhang, X. J.; Wang, J.; Yoon, L.; Adams, Z. C.; Dillingham, B. C.;
Sanchez, B. B.; Vantourout, J. C.; Flanagan, M. E.; Piotrowski, D. W.;
Richardson, P. F.; Green, S. A.; Shenvi, R. A.; Chen, J. S.; Baran, P. S.;
Dawson, P. E. J. Am. Chem. Soc. 2019, 141, 9998. (v) Phelan, J. P.;
Lang, S. B.; Sim, J.; Berritt, S.; Peat, A. J.; Billings, K.; Fan, L. J.;
Molander, G. A. J. Am. Chem. Soc. 2019, 141, 3723. (w) Cai, P.; Yang,
G.; Zhao, L.; Wan, J.; Li, J.; Liu, G. Org. Lett. 2019, 21, 6633.
(4) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
(5) Wilson, C. O.; Gisvold, O.; Block, J. H. In Wilson and Gisvold’s
Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th ed.;
Block, J., Beale, J. M., Eds.; Lippincott Williams and Wilkins:
Philadelphia, 2004.
(6) (a) Melkko, S.; Scheuermann, J.; Dumelin, C. E.; Neri, D. Nat.
Biotechnol. 2004, 22, 568. (b) Sakurai, K.; Snyder, T. M.; Liu, D. R. J.
Am. Chem. Soc. 2005, 127, 1660. (c) Deng, H.; O’Keefe, H.; Davie, C.
P.; Lind, K. E.; Acharya, R. A.; Franklin, G. J.; Larkin, J.; Matico, R.;
Neeb, M.; Thompson, M. M.; Lohr, T.; Gross, J. W.; Centrella, P. A.;
O'Donovan, G. K.; Bedard, K. L.; van Vloten, K.; Mataruse, S.;
Skinner, S. R.; Belyanskaya, S. L.; Carpenter, T. Y.; Shearer, T. W.;
Clark, M. A.; Cuozzo, J. W.; Arico-Muendel, C. C.; Morgan, B. A. J.
Med. Chem. 2012, 55, 7061. (d) Deng, H.; Zhou, J.; Sundersingh, F.
S.; Summerfield, J.; Somers, D.; Messer, J. A.; Satz, A. L.; Ancellin, N.;
Arico-Muendel, C. C.; Bedard, K. L.; Beljean, A.; Belyanskaya, S. L.;
Bingham, R.; Smith, S. E.; Boursier, E.; Carter, P.; Centrella, P. A.;
Clark, M. A.; Chung, C.-w.; Davie, C. P.; Delorey, J. L.; Ding, Y.;
Franklin, G. J.; Grady, L. C.; Herry, K.; Hobbs, C.; Kollmann, C. S.;
Morgan, B. A.; Kaushansky, L. J.; Zhou, Q. ACS Med. Chem. Lett.
2015, 6, 919.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) (a) Brenner, S.; Lerner, R. A. Proc. Natl. Acad. Sci. U. S. A. 1992,
89, 5381−5383. (b) Kleiner, R. E.; Dumelin, C. E.; Liu, D. R. Chem.
Soc. Rev. 2011, 40, 5707. (c) Mannocci, L.; Leimbacher, M.; Wichert,
M.; Scheuermann, J.; Neri, D. Chem. Commun. 2011, 47, 12747.
(d) Clark, M. A. Curr. Opin. Chem. Biol. 2010, 14, 396.
(2) (a) Clark, M. A.; Acharya, R. A.; Arico-Muendel, C. C.;
Belyanskaya, S. L.; Benjamin, D. R.; Carlson, N. R.; Centrella, P. A.;
Chiu, C. H.; Creaser, S. P.; Cuozzo, J. W.; Davie, C. P.; Ding, Y.;
Franklin, G. J.; Franzen, K. D.; Gefter, M. L.; Hale, S. P.; Hansen, N.
J.; Israel, D. I.; Jiang, J.; Kavarana, M. J.; Kelley, M. S.; Kollmann, C.
S.; Li, F.; Lind, K.; Mataruse, S.; Medeiros, P. F.; Messer, J. A.; Myers,
P.; O’Keefe, H.; Oliff, M. C.; Rise, C. E.; Satz, A. L.; Skinner, S. R.;
Svendsen, J. L.; Tang, L.; van Vloten, K.; Wagner, R. W.; Yao, G.;
Zhao, B.; Morgan, B. A. Nat. Chem. Biol. 2009, 5, 647. (b) Franzini, R.
M.; Neri, D.; Scheuermann, J. Acc. Chem. Res. 2014, 47, 1247.
(c) Zimmermann, G.; Neri, D. Drug Discovery Today 2016, 21, 1828.
(d) Franzini, R. M.; Randolph, C. J. Med. Chem. 2016, 59, 6629.
̌
́
(e) Salamon, H.; Klika Skopic, M.; Jung, K.; Bugain, O.;
Brunschweiger, A. ACS Chem. Biol. 2016, 11, 296. (f) Yuen, L. H.;
Franzini, R. M. ChemBioChem 2017, 18, 829. (g) Goodnow, R. A.;
Dumelin, C. E.; Keefe, A. D. Nat. Rev. Drug Discovery 2017, 16, 131.
(7) Yang, K.; Ke, M.; Lin, Y.; Song, Q. Green Chem. 2015, 17, 1395.
E
Org. Lett. XXXX, XXX, XXX−XXX