3112
A. Christodoulou et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3110–3112
Table 1
the molecular level and the induced effects in DNA damage and
repair signaling pathways as well as on the cell cycle and apoptotic
cellular machineries is currently under active investigation in our
laboratories.
Inhibition of proliferation induced after a 72 h incubation with the thioxanthenone
derivatives (IC50 values in
l
Ma)
Compound
HCT-116
MES-SA
MES-SA/Dx5
RFb
6a
6b
6c
6d
8a
8b
8c
8d
9
2.10 0.36
2.14 0.28
1.15 0.07
8.09 0.43
5.42 0.55
6.02 0.53
7.04 0.47
5.47 2.12
60.37 3.57
0.16 0.07
0.022 0.003
4.44 1.85
1.93 0.13
1.72 0.10
16.74 2.75
3.52 0.45
3.98 0.94
2.30 0.13
3.98 0.10
68.17 2.99
0.030 0.008
0.012 0.003
1.70 0.05
5.08 0.26
2.15 0.26
9.16 0.90
5.18 0.26
2.61 0.37
1.45 0.31
2.55 0.51
>100
0.38
2.63
1.25
0.55
1.47
0.66
0.63
0.64
––
Acknowledgments
The authors would like to thank Dr. H. Pratsinis and Dr. D. Klet-
sas, who kindly provided MES-SA and MES-SA/Dx5 cell lines as
well as Dr. N. Cacoullos for helpful discussions.
Supplementary data
Dx
Mx
2.398 0.162
0.080 0.016
79.93
6.67
Supplementary data associated with this article can be found, in
a
The results represent the mean ( standard deviation) of 3–5 independent
experiments and are expressed as IC50, the concentration that reduced by 50% the
optical density of treated cells with respect to untreated controls.
b
IC50 resistant cells / IC50 sensitive cells.
References and notes
1. Wilson, W. R.; Denny, W. A.; Twigden, S. J.; Baguley, B. C.; Probert, J. C. Br. J.
Cancer 1984, 49, 215.
2. Pawlak, J. W.; Pawlak, K.; Konopa, J. Chem. Biol. Interact. 1983, 43, 151.
3. Konopa, J.; Pawlak, J. W.; Pawlak, K. Chem. Biol. Interact. 1983, 43, 175.
4. Bratkowska-Seniow, B.; Oleszkiewicz, L.; Kozak, E.; Krizar, T. Materia. Medica.
Polona. 1976, 8, 323.
5. Gniazdowski, M.; Szmigiero, L. Gen. Pharmacol. 1995, 26, 473.
6. Lee, H. H.; Wilson, W. R.; Denny, W. A. Anti-cancer Drug Disc. 1999, 14, 487.
7. Mazerska, Z.; Lukoowicz, J.; Konopa, J. Arzneim.-Forsch. 1990, 40, 472.
8. Wilson, W. R.; Denny, W. A.; Stewart, G. M.; Fenn, A.; Probert, J. C. Int. J. Radiat.
Oncol. Biol. Phys. 1986, 12, 1235.
9. Narayanan, R.; Tiwari, P.; Inoa, D.; Ashok, B. T. Life Sci. 2005, 77, 2312.
10. Tadi, K.; Ashok, B. T.; Chen, Y.; Banerjee, D.; Wysocka-Skrzela, B.; Konopa, J.;
Darzynkiewicz, Z.; Tiwari, R. K. Cancer Biol. Ther. 2007, 6, 1632.
11. Augustin, E.; Mos-Rompa, A.; Nowak-Ziatyk, D.; Konopa, J. Biochem. Pharmacol.
2010, 79, 1231.
12. Gorlewska, K.; Mazerska, Z.; Sowinski, P.; Konopa, J. Chem. Res. Toxicol. 2001,
14, 1.
13. Kolokythas, G.; Daniilides, K.; Pouli, N.; Marakos, P.; Pratsinis, H.; Kletsas, D. J.
Heterocycl. Chem., in press.
14. Kolokythas, G.; Kostakis, I. K.; Pouli, N.; Marakos, P.; Kousidou, O. Ch.;
Tzanakakis, G. N.; Karamanos, N. K. Eur. J. Med. Chem. 2007, 42, 307.
15. Giannouli, V.; Kostakis, I. K.; Pouli, N.; Marakos, P.; Kousidou, O. Ch.;
Tzanakakis, G. N.; Karamanos, N. K. J. Med. Chem. 2007, 50, 1716.
16. Kostakis, I. K.; Pouli, N.; Marakos, P.; Kousidou, O. Ch.; Roussidis, A.;
Tzanakakis, G. N.; Karamanos, N. K. Bioorg. Med. Chem. 2008, 16, 3445.
17. Hadjipavlou, C.; Kostakis, I. K.; Pouli, N.; Marakos, P.; Pratsinis, H.; Kletsas, D.
Bioorg. Med. Chem.Lett. 2006, 16, 4822.
at relatively similar doses. Moreover, estimation of the relative
resistant factor (RF) of each compound revealed that, with the
exception of 6b, all other analogues are equally active against both
chemo-sensitive and chemo-resistant cells (RF less or close to 1),
and therefore, could potentially possess the ability to overcome
multidrug resistance. Notably, in some cases (e.g., compounds 6a,
6d, 8c, 8d) the Dx-resistant (MES-SA/Dx5) cells appeared to be
more sensitive, as compared to Dx-sensitive MES-SA cells, to the
cytotoxic effects of the compounds under study (Table 1).
Interestingly, compound 9, in which the 3-nitro group has been
replaced by a second basic side-chain, lacks cytotoxicity. As previ-
ously noted this compound was prepared on purpose, since we
anticipated this lack of activity based on our preceding results.17
Conclusively, the nitro group at position 3, seems to be a rather
important feature of this class of compounds and correlates with
enhanced cytotoxic activity against tumor cells.
The observed low IC50 values of the new compounds and their
ability to overcome multidrug resistance, as they could also effi-
ciently kill the 100 fold Dx-resistant MES-SA/Dx5 cell line, are di-
rectly comparable to the effect exhibited by the previously
reported benzopyranoisoindole bioisosters.17 This observation
provides significant evidence that these substituted fused ring
systems may serve as a good pharmacophore/scaffold and could
provide excellent candidates for future anticancer drug develop-
ment. The in depth study of their exact mechanism of action at
18. Hadjipavlou, C.; Kostakis, I. K.; Pouli, N.; Marakos, P.; Mikros, E. Tetrahedron
Lett. 2006, 47, 3681.
19. Babichev, F. S.; Kovtunenko, V. A.; Tyltin, A. K. Russ. Chem. Rev. 1981, 50, 2073.
20. Kostakis, I. K.; Magiatis, P.; Pouli, N.; Marakos, P.; Skaltsounis, A.-L.; Pratsinis,
H.; Leonce, S.; Pierre, A. J. Med. Chem. 2002, 45, 2599.
21. Harker, W. G.; Sikic, B. I. Cancer Res. 1985, 45, 4091.