I. Axarli et al. / European Journal of Medicinal Chemistry 44 (2009) 2009–2016
2015
4
3
2
1
0
and a phosphorodiamidate, which in turn spontaneously forms
aziridinium species, the actual alkylating moieties [49]. More
recently Saavedra et al., (2004) have designed PABA/NO, a NO-
releasing GST-activated prodrug. PABA/NO, after hGSTP1-1-cata-
lyzed conjugation to GSH, releases a diazeniumdiolate ion, with
subsequent release of nitric oxide [50]. Encouraging results in both
cell and animal models of cancer have suggested that this prodrug
exhibits improved cytotoxic selectivity toward cancer cells, most
likely due to the high levels of GST in these cells. The above
approach exemplifies the one described in the present study,
nevertheless it lacks the second feature, namely, a structural
element that would target the drug selectively to tumor cells.
Acknowledgement
0
2
4
6
8
This work was partially supported by the Hellenic General
Secretariat for Research and Technology (programme: Operational
Programme for Competitiveness, grant No YB45).
1/[GSH] (1/mM)
6
4
References
[1] B. Mannervik, U.H. Danielson, CRC Crit. Rev. Biochem. 23 (1988) 283–337.
[2] C. Frova, Biomol. Eng. 23 (2006) 149–169.
[3] A. Dulhunty, P. Gage, S. Curtis, G. Chelvanayagam, P. Board, J. Biol. Chem. 276
(2001) 3319–3323.
[4] Z. Alias, A.G. Clark, Proteomics 7 (2007) 3618–3628.
[5] D.P. Dixon, B.G. Davis, R. Edwards, J. Biol. Chem. 277 (2002) 30859–30869.
[6] N. Allocati, B. Favaloro, M. Masulli, M.F. Alexeyev, C. Di Ilio, Biochem. J. 373
(2002) 305–311.
2
[7] E. Wiktelius, G. Stenberg, Biochem. J. 406 (2007) 115–123.
[8] A.J. Oakley, Curr. Opin. Struct. Biol. 15 (2005) 716–723.
[9] J.C. Cusack Jr., K.K. Tanabe, Surg. Oncol. Clin. N. Am. 11 (2002) 497–519.
[10] A. Sehgal, Curr. Opin. Drug Discov. Devel 5 (2002) 245–250.
[11] J.D. Hayes, D.J. Pulford, Crit. Rev. Biochem. Mol. Biol. 30 (1995) 445–600.
[12] G. Batist, A. Tulpule, B.K. Sinha, A.G. Katki, C.E. Myers, K.H. Cowan, J. Biol.
Chem. 261 (1986) 15544–15549.
0
-2
0
20
40
[13] J.M. Sargent, C. Williamson, A.G. Hall, A.W. Elgie, C.G. Taylor, Exp. Med. Biol.
457 (1999) 205–209.
1/[CDNB] (1/mM)
[14] Y. Kodera, K. Isobe, M. Yamauchi, K. Kondo, S. Akiyama, K. Ito, I. Nakashima,
H. Takagi, Cancer. Chemother. Pharmacol. 34 (1994) 203–208.
[15] V. Adler, Z. Yin, S.Y. Fuchs, M. Benezra, L. Rosario, K.D. Tew, M.R. Pincus,
M. Sardana, C.J. Henderson, C.R. Wolf, R.J. Davis, Z. Ronai, EMBO J. 18 (1999)
1321–1334.
[16] C. Sweeney, B.F. Coles, S. Nowell, N.P. Lang, F.F. Kadlubar, Toxicology 181–182
(1988) 83–87.
[17] J.C. Reubi, S. Wenger, J. Schmuckli-Maurer, J.C. Schaer, M. Gugger, Clin. Cancer
Res. 8 (2002) 1139–1146.
Fig. 6. Kinetic inhibition studies. A: Lineweaver–Burk plots for the inhibition of
hGSTA1-1 by benzylsulfonyl-GSH at different GSH concentrations. Enzyme assayed in
the absence (B) or in the presence of benzylsulfonyl-GSH (mM): 5 (C); 15 (,). B:
Inhibition of hGSTA1-1 by benzylsulfonyl-GSH at different CDNB concentrations.
Enzyme assayed in the absence (B) or in the presence of benzylsulfonyl-GSH (mM): 5
(C); 10 (,).
[18] A. Nagy, P. Armatis, R.Z. Cai, K. Szepeshazi, G. Halmos, A.V. Schally, Proc. Natl.
Acad. Sci. USA 94 (1997) 652–656.
[19] N.E. Labrou, L.V. Mello, Y.D. Clonis, Eur. J. Biochem. 268 (2001) 3950–3957.
[20] D.J. Meyer, M. Thomas, Biochem. J. 311 (1995) 739–742.
[21] B. McGonigle, S.J. Keeler, S.M. Lau, M.K. Koeppe, D.P. O’Keefe, Plant Physiol. 124
(2000) 1105–1120.
[22] B.G. Fields, L.R. Noble, Int. J. Pept. Prot. Res. 35 (1990) 161–214.
[23] S. Aventis, European Patent 3,22,348 and US Patent 5,124,478.
[24] W. Ko¨ning, R. Geiger, Chem. Ber. 103 (1970) 788–798.
[25] E. Kaiser, R.L. Colescott, C.D. Bossinger, P.I. Cook, Anal. Biochem. 34 (1970)
595–598.
[26] T. Vojkovsky, Detection of secondary amines on solid phase, Pept. Res. 8 (1995)
236–237.
[27] R.M. Katusz, B. Bono, R.F. Colman, Biochemistry 30 (1991) 11230–11238.
[28] M.M. Bradford, Anal. Biochem 72 (1976) 248–258.
[29] A.D. Cameron, I. Sinning, G. L‘Hermite, B. Olin, P.G. Board, B. Mannervik,
T.A. Jones, Structure 3 (1995) 717–727.
com>]. Planaria Software LLC, Seattle, WA.
[32] A. Erve, Y. Saoudi, S. Thirot, C. Guetta-Landras, J.C. Florent, C.H. Nguyen,
D.S. Grierson, A.V. Popov, Nucleic Acids Res. 34 (2006) (e43).
[33] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew,
A.J. Olson, J. Comput. Chem. 19 (1998) 1639–1662.
[34] W.L. DeLano, The PyMOL Molecular Graphics System, DeLano Scientific, San
Carlos, USA, 2002.
[35] S. Mukanganyama, M. Widersten, Y.S. Naik, B. Mannervik, J.A. Hasler, Int. J.
Cancer 97 (2002) 700–705.
[36] Z. Zhao, K.A. Koeplinger, T. Peterson, R.A. Conradi, P.S. Burton, A. Suarato,
R.L. Heinrikson, A.G. Tomasselli, Drug Metab. Dispos. 27 (1999) 992–998.
[37] K.A. Koeplinger, Z. Zhao, T. Peterson, J.W. Leone, F.S. Schwende,
R.L. Heinrikson, A.G. Tomasselli, Drug Metab. Dispos. 27 (1999) 986–991.
Kinetic inhibition studies were carried out to evaluate the
inhibition potency of benzylsulphonyl-GSH. The inhibition patterns
are illustrated in Fig. 6. Benzylsulphonyl-GSH exhibited a competi-
tive-type of inhibition with respect to GSH (Ki ¼ 8.1 ꢃ0.7
mM) and
CDNB (Ki ¼ 1.7 ꢃ 0.02
m
M). This finding indicates that the released
inhibitor binds fairly strongly to the substrate binding site of
hGSTA1-1 and is expected to be an effective inhibitor to other GST
isoenzymes present in cancer cells.
In the past, modulation by inhibition of GST has been attempted
as a means to improve response to cancer drugs. Use of, for
example, ethacrynic acid, although effective during its experi-
mental behaviour with various GST isozymes, was not successful
enough in the clinic to merit continued development [45]. In
another approach the peptidomimetic inhibitor of GSTP1-1, TLK199
[
g
-glutamyl-S-(benzyl)cysteinyl-R(ꢂ)phenyl glycine diethyl ester]
was envisaged as a plausible means to sensitize drug-resistant
tumours that overexpress GST [46].
More recently GST-activated prodrugs were developed to
exploit high hGSTP1-1 levels associated with malignancy, poor
prognosis, and the development of drug resistance [11]. For
example, in TLK286 (Telcyta), the sulphydryl of a glutathione
conjugate has been oxidized to a sulphone [47,48]. The tyrosine-7
in hGSTP1-1 promotes a
b-elimination reaction that cleaves the
latter compound. The cleavage products are a glutathione analogue