S. Ke et al. / Bioorg. Med. Chem. Lett. 19 (2009) 332–335
8. Cohen, E. Ann. Res. Entomol. 1987, 32, 71.
335
90
80
70
60
50
40
30
20
10
0
9. Merzendorfer, H. J. Comp. Physiol. B 2006, 176, 1.
10. van Eck, W. H. Insect Biochem. 1979, 9, 295.
NZ
C1
11. Zhang, D.; Miller, M. J. Curr. Pharm. Des. 1999, 5, 73.
12. Li, Y.; Cui, Z.; Hu, J.; Ling, Y.; Yang, X. Prog. Chem. 2007, 19, 535.
13. Grugier, J.; Xie, J.; Duarte, I.; Valery, J.-M. J. Org. Chem. 2000, 65, 979.
14. Schafer, A.; Thiem, J. J. Org. Chem. 2000, 65, 24.
15. Obi, K.; Uda, J.-I.; Iwase, K.; Sugimoto, O.; Ebisu, H.; Matsuda, A. Bioorg. Med.
Chem. Lett. 2000, 10, 1451.
16. Behr, J.-B.; Gautier-Lefebvre, I.; Mvondo-Evina, C.; Guillerm, G.; Ryder, N. S. J.
Enzyme Inhib. 2001, 16, 107.
17. Wang, R.; Steensma, D. H.; Takaoka, Y.; Yun, J. W.; Kajimoto, T.; Wong, C.-H.
Bioorg. Med. Chem. 1997, 5, 661.
18. Yeager, A. R.; Finney, N. S. J. Org. Chem. 2004, 69, 613.
19. Yeager, A. R.; Finney, N. S. J. Org. Chem. 2005, 70, 1269.
20. Plant, A.; Thompson, P.; Williams, D. M. J. Org. Chem. 2008, 73, 3714.
21. Behr, J.-B.; Gainvors-Claisse, A.; Belarbi, A. Nat. Prod. Res. 2007, 21, 76.
22. Sudoh, M.; Yamazaki, T.; Masubuchi, K.; Taniguchi, M.; Shimma, N.; Arisawa,
M.; Yamada-Okabe, H. J. Biol. Chem. 2000, 275, 32901.
23. Urbina, J. M.; Cortés, J. C. G.; Palma, A.; López, S. N.; Zacchino, S. A.; Enriz, R. D.;
Ribas, J. C.; Kouznetzov, V. V. Bioorg. Med. Chem. 2000, 8, 691.
24. López, S. N.; Castelli, M. V.; Zacchino, S. A.; Domínguez, J. N.; Lobo, G.; Charris-
Charris, J.; Cortés, J. C. G.; Ribas, J. C.; Devia, C.; Rodríguez, A. M.; Enriz, R. D.
Bioorg. Med. Chem. 2001, 9, 1999.
25. Masubuchi, K.; Taniguchi, M.; Umeda, I.; Hattori, K.; Suda, H.; Kohchi, Y.;
Isshiki, Y.; Sakai, T.; Kohchi, M.; Shirai, M.; Okabe, H.; Sudoh, M.; Yamazaki, T.;
Shimma, N. Bioorg. Med. Chem. Lett. 2000, 10, 1459.
26. Hwang, E. I.; Kwon, B. M.; Lee, S. H.; Kim, N. R.; Kang, T. H.; Kim, Y. T.; Park, B.
K.; Kim, S. U. J. Antimicrob. Chemother. 2002, 49, 95.
27. Behr, J.-B. Curr. Med. Chem. Anti-Infective Agents 2003, 2, 173.
28. Abadi, A. H.; Eissa, A. A. H.; Hassan, G. S. Chem. Pharm. Bull. 2003, 51, 838.
29. Khanum, S. A.; Shashikanth, S.; Umesha, S.; Kavitha, R. Eur. J. Med. Chem. 2005,
40, 1156.
30. Almasirad, A.; Vousooghi, N.; Tabatabai, S. A.; Kebriaeezadeh, A.; Shafiee, A.
Acta Chim. Slov. 2007, 54, 317.
31. Hall, A.; Brown, S. H.; Chowdhury, A.; Giblin, G. M. P.; Gibson, M.; Healy, M. P.;
Livermore, D. G.; McArthur Wilson, R. J.; Naylor, A.; Anthony Rawlings, A.;
Roman, S.; Ward, E.; Willay, C. Bioorg. Med. Chem. Lett. 2007, 17, 4450.
32. Ali, O. M.; Amer, H. H.; Abdel-Rahman, A. A.-H. Synthesis 2007, 18, 2823.
33. Arrington, J. P.; Wade, L. L. U.S. Patent 4215129, 1980; Chem. Abstr. 1980, 94,
59794f.
34. Cao, S.; Qian, X. H.; Song, G. H.; Chai, B.; Jiang, Z. S. J. Agric. Food Chem. 2003, 51,
152.
35. Huang, Q. C.; Qian, X. H.; Song, G. H.; Cao, S. Pest Manag. Sci. 2003, 59, 933.
36. Cao, S.; Wei, N.; Zhao, C. M.; Li, L. N.; Huang, Q. C.; Qian, X. H. J. Agric. Food
Chem. 2005, 53, 3120.
C15
1
1.2 1.4 1.6 1.8
2
2.2 2.4 2.6
LogC
Figure 7. Semi-logarithmic plot of the inhibitory activity of compounds C1 and C15
against chitin biosynthesis.
compounds containing electron-withdrawing group such as
2,4-dichlorophenyl (C15 and C19) is more efficient than those with
alkoxy-substituents on the benzene ring. However, compound C11
containing p-chlorophenyl showed lower activity, suggesting that
the ortho-position steric effects of aromatic ring attached to
oxadiazoline ring were important for inhibitory activity.
Since compounds C1 and C15 displayed the highest inhibitory
activity, five serial dilutions were further tested for enzyme activ-
ity. As indicated in Figure 7, their inhibitory effects on chitin bio-
synthesis were concentration-dependent. Compounds C1 and C15
exhibited significant inhibition against chitin biosynthesis with
the IC50 values of 7.93 and 5.60 lM, respectively.
In conclusion, the novel 1,3,4-oxadiazolines derivatives C1–10
and C11–20 were designed as potential antifungal reagents, which
interfered with chitin biosynthesis. Compounds C1 and C15
showed the highest inhibitory activity at lower concentration.
The understanding of structure–activity relationship and assay of
these compounds may provide some insights into the rational de-
sign of new inhibitors of chitin biosynthesis.
37. The selected analytical data of representative compounds C1 and C15 were as
follows: C1. This compound was obtained as light yellow liquid following the
standard procedures, yield 76%, IR (KBr):
m ;
= 1665 (C=O), 1617 (C=N) cmÀ1 1H
NMR (400 MHz, CDCl3): d = 7.78 (dd, 3J = 7.6 Hz, 4J = 2 Hz, 1H, Ph-H), 7.50 (dd,
3J = 8.2 Hz, 4J = 1.2 Hz, 1H, Ph-H), 7.33–7.43 (m, 2H, Ph-H), 2.42–2.46 (m, 2H,
CH2), 2.34 (s, 3H, COCH3), 1.94–2.02 (m, 2H, CH2), 1.27–1.44 (m, 8H, CH2), 0.90
(t, J = 7 Hz, 6H, CH3); 13C NMR (100 MHz, CDCl3): d = 167.29, 152.93, 133.30,
131.67, 131.22, 130.40, 126.71, 124.00, 104.86, 36.06, 24.70, 22.39, 22.26,
13.98; MS: m/z = 336 (M+), 279, 237, 210, 139, 111; EI-HRMS: calcd for
C18H25ClN2O2 (M+), 336.1605; found, 336.1605; C15. This compound was
obtained as white solid following the standard procedures, yield 64%, mp
Acknowledgments
This work was financially supported by the National Natural
Science Foundation of China (20502006Á20572024), the National
High Technology Research and Development Program of China
(2006AA10A201) and the National Key Technology R&D Program
of China (2006BAE01A01-8). The authors also thank for the partial
support from Shanghai Leading Academic Discipline Project (B507)
and Shanghai Foundation of Science and Technology (064319022).
104.3–105.7 °C; IR (KBr):
m ;
= 3362 (N–H), 1710, 1691 (C@O), 1625 (C@N) cmÀ1
1H NMR (400 MHz, CDCl3): d = 9.36 (s, 1H, N–H), 7.74 (d, J = 8.8 Hz, 1H, Ph-H),
7.66 (d, J = 7.2 Hz, 1H, Ph-H), 7.54 (d, 4J = 2 Hz, 1H, Ph-H), 7.41–7.44 (m, 2H, Ph-
H), 7.35–7.40 (m, 2H, Ph-H), 2.34–2.42 (m, 2H, CH2), 1.96–2.05 (m, 2H, CH2),
1.25–1.41 (m, 8H, CH2), 0.89 (t, J = 7 Hz, 6H, CH3); 13C NMR (100 MHz, CDCl3):
d = 165.79, 152.10, 146.04, 137.79, 134.76, 134.14, 131.78, 131.30, 131.08,
130.47, 129.99, 129.91, 127.34, 127.08, 121.62, 105.08, 36.33, 24.62, 22.31,
13.97; MS: m/z = 509, 328, 286, 271, 244, 180, 139, 111, 75; EI-HRMS: calcd for
C24H26Cl3N3O3 (M+), 509.1040; found, 509.1025.
Supplementary data
Supplementary data associated with this article can be found, in
38. Lucero, H. A.; Kuranda, M. J.; Bulik, D. A. Anal. Biochem. 2002, 305, 97.
39. Kaymakçiog˘lu, B. K.; Rollas, S.; Körceg˘ez, E.; Ariciog˘lu, F. Eur. J. Pharm. Sci.
2005, 26, 97.
References and notes
40. Takahashi, T.; Sakuraba, A.; Hirohashi, T.; Shibata, T.; Hirose, M.; Haga, Y.;
Nonoshita, K.; Kanno, T.; Ito, J.; Iwaasa, H.; Kanatani, A.; Fukami, T.; Sato, N.
Bioorg. Med. Chem. 2006, 14, 7501.
41. Ban, H.; Muraoka, M.; Ioriya, K.; Ohashi, N. Bioorg. Med. Chem. Lett. 2006, 16, 44.
42. Galiano, S.; Ceras, J.; Cirauqui, N.; Pérez, S.; Juanenea, L.; Rivera, G.; Aldana, I.;
Monge, A. Bioorg. Med. Chem. 2007, 15, 3896.
43. Kim, Y. J.; Ryu, J.-H.; Cheon, Y. J.; Lim, H. J.; Jeon, R. Bioorg. Med. Chem. Lett.
2007, 17, 3317.
44. Berglund, M.; Dalence-Guzemán, M. F.; Skogvall, S.; Sterner, O. Bioorg. Med.
Chem. 2008, 16, 2529.
1. Groll, A. H.; De Lucca, A. J.; Walsh, T. J. Trends Microbiol. 1998, 6, 117.
2. Xie, J.; Thellend, A.; Becker, H.; Vidal-Cros, A. Carbohydrate Res. 2001, 334, 177.
3. Hwang, E. I.; Lee, Y. M.; Lee, S. M.; Yeo, W. H.; Moon, J. S.; Kang, T. H.; Park, K. D.;
Kim, S. U. Plant Med. 2007, 73, 679.
4. Ruiz-Herrera, J.; San-Blas, G. Curr. Drug Targets Infect. Disord. 2003, 3, 77.
5. Maertens, J. A.; Boogaerts, M. A. Curr. Pharm. Des. 2000, 6, 225.
6. Gooday, G. W. J. Gen. Microbiol. 1977, 99, 1.
7. Cabib, E. Adv. Enzymol. 1987, 59, 59.