Page 5 of 7
Journal of the American Chemical Society
1
2
3
4
Figure 1. Free energy profiles for oxidation addition, migratory insertion and reductive elimination pathway of the Ni‐
catalyzed C‐F/N‐H annulation of aromatic amides with alkynes.
5
6
7
8
9
(2015), 575‐619, John Wiley & Sons, Inc. (b) Nakao, Y. Cat‐
alytic C‐CN Bond Activation. Topics in Current Chem. 2014,
346, 33‐58. (c) Deng, L.; Dong, G. Carbon‐Carbon Bond
Activation of Ketones. Trends in Chem. 2019, 2, 183‐198.
3. For recent selected reviews on C‐O activation, see: (a) To‐
bisu, M.; Chatani, N. Cross‐Couplings Using Aryl Ethers
via C‐O Bond Activation Enabled by Nickel Catalysts. Acc.
Chem. Res. 2015, 48, 1717‐1726. (b) Bisz, E.; Szostak, M.
Iron‐Catalyzed C‐O Bond Activation: Opportunity for Sus‐
tainable Catalysis. ChemSusChem 2017, 10, 3964‐3981.
4. For recent reviews on C‐F activation, see: Yang, S.‐D. Ho‐
mogeneous transition‐metal‐catalyzed C‐F activation, Ed‐
ited by Shi, Z.‐J. Homogeneous Catalysis for Unreactive
Bond Activation (2015), 203‐268, John Wiley & Sons, Inc.
5. For selected papers on cross‐coupling reactions involving
C‐F activation, see: (a) Tobisu, M.; Xu, T.; Shimasaki, T.;
Chatani, N. Nickel‐Catalyzed Suzuki‐Miyaura Reaction of
Aryl Fluorides. J. Am. Chem. Soc. 2011, 133, 19505‐19511. (b)
Liu, X.‐W.; Echavarren, J.; Zarate, C.; Martin, R. Ni‐Cata‐
lyzed Borylation of Aryl Fluorides via C‐F Cleavage. J. Am.
Chem. Soc. 2015, 137, 12470‐12473. (c) Niwa, T.; Ochiai, H.;
In summary, we report herein on the Ni‐catalyzed C‐F/N‐
H annulation of ortho‐fluoro‐substituted aromatic amides
with alkynes, leading to the production of 1(2H)‐isoquino‐
linones, in which activation of C‐F bond is a key step.15 The
reaction proceeds in the absence of a ligand and under
mild reaction conditions (40‐60 °C). The new methodology
reported herein, such as the amidate‐promoted activation
of C‐F bonds is applicable to the activation of other unre‐
active bonds. Studies of the use of this methodology are
currently underway and will be reported in due course.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information. The Supporting Information is
Experimental procedure, synthesis of starting materials, and
characterization of compounds. Computational Studies.
X‐ray structural information of 3wa (CCDC‐2009074).
Watanabe,
Y.;
Hosoya,
T.
Ni/Cu‐Catalyzed
AUTHOR INFORMATION
Defluoroborylation of Fluoroarenes for Diverse C‐F Bond
Functionalizations. J. Am. Chem. Soc. 2015, 137, 14313‐14318.
(d) Ogawa, H.; Yang, Z.‐K.; Minami, H.; Kojima, K.; Saito,
T.; Wang, C.; Uchiyama, M. Revisitation of Organoalumi‐
num Reagents Affords a Versatile Protocol for C‐X (X = N,
O, F) Bond‐Cleavage Cross‐Coupling: A Systematic Study.
ACS Catal. 2017, 7, 3988‐3994. (e) Harada, T.; Ueda, Y.;
Iwai, T.; Sawamura, M. Nickel‐Catalyzed Amination of
Aryl Fluorides with Primary Amines. Chem. Commun.
2018, 54, 1718‐1721. (f) Li, J.; Wu, C.; Zhou, B.; Walsh, P. J.
Nickel‐Catalyzed C(sp3)‐H Arylation of Diarylmethane
Derivatives with Aryl Fluorides. J. Org. Chem. 2018, 83,
2993‐2999. (g) Ho, Y. A.; Leiendecker, M.; Liu, X.; Wang,
C.; Alandini, N.; Rueping, M. Nickel‐Catalyzed Csp2‐Csp3
Bond Formation via C‐F Bond Activation. Org. Lett. 2018,
20, 5644‐5647. (h) Zhao, X.; Wu, M.; Liu, Y.; Cao, S.
LiHMDS‐Promoted Palladium or Iron‐Catalyzed ipso‐
Defluoroborylation of Aryl Fluorides. Org. Lett. 2018, 20,
5564‐5568. (i) Lim, S.; Song, D.; Jeon, S.; Kim, Y.; Kim, H.;
Lee, S.; Cho, H.; Lee, B. C.; Kim, S. E.; Kim, K. Cobalt‐Cat‐
alyzed C‐F Bond Borylation of Aryl Fluorides. Org. Lett.
2018, 20, 7249‐7252. (j) Tian, Y.‐M.; Guo, X.‐N.; Kuntze‐
FechnerIvo, M. W.; Krummenacher, I.; Braunschweig, H.;
Radius, U.; Steffen, A.; Marder, T. B. Selective Photocata‐
lytic C‐F Borylation of Polyfluoroarenes by Rh/Ni Dual Ca‐
talysis Providing Valuable Fluorinated Arylboronate Es‐
ters. J. Am. Chem. Soc. 2018, 140, 17612‐17623.
Corresponding Author
*E‐mail: chatani@chem.eng.osaka‐u.ac.jp
ORCID
Ruopeng Bai: 0000‐0002‐1097‐8526
Yu Lan: 0000‐0002‐2328‐0020
Naoto Chatani: 0000‐0001‐8330‐7478
Notes
There are no conflicts to declare.
ACKNOWLEDGMENT
This work was supported by Grant in Aid for Specially Pro‐
moted Research by MEXT (No. 17H06091).
REFERENCES
1.
For recent selected reviews on C‐H activation, see: (a)
Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao‐Huy, T.;
Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.;
Wencel‐Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M.
A Comprehensive Overview of Directing Groups Applied
in Metal‐Catalysed C H Functionalisation Chemistry.
Chem. Soc. Rev. 2018, 47, 6603–6743. (b) Gandeepan, P.;
Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d
Transition Metals for C H Activation. Chem. Rev. 2019, 119,
2192–2452. (c) Rej, S.; Chatani, N. Rhodium‐Catalyzed
C(sp2)−H or C(sp3)−H Bond Functionalization Assisted by
Removable Directing Groups. Angew. Chem., Int. Ed. 2019,
58, 8304‐8329. (d) Khake, S. M.; Chatani, N. Chelation‐
Assisted Nickel‐Catalyzed C‐H Functionalizations. Trends
in Chem. 2019, 1, 524‐539. (e) Rej, S.; Ano, Y.; Chatani, N.
Bidentate Directing Groups: An Efficient Tool in C‐H
Bond Functionalization Chemistry for the Expedient
Construction of C‐C Bonds. Chem. Rev. 2020, 120, 1788‐
1887.
6. (a) Pettit, G. R.; Meng, Y. H.; Herald, D. L.; Graham, K. A.
N.; Pettit, R. K.; Doubek, D. L. Isolation and Structure of
Ruprechstyril from Ruprechtia tangarana. J. Nat. Prod.
2003, 66, 1065–1069. (b) Rigby, J. H.; Maharoof, U. S. M.;
Mateo, M. E. Studies on the Narciclasine Alkaloids: Total
Synthesis of (+)‐Narciclasine and (+)‐Pancratistatin. J. Am.
Chem. Soc. 2000, 122, 6624–6628. (c) Guo, S.; Sun, L.; Liu,
Y.; Ma, N.; Zhang, X.; Fan, X. Rh(III)‐Catalyzed Oxidative
Spirocyclization of Isoquinolones with α‐Diazo‐1,3‐indan‐
diones. Org. Lett. 2019, 21, 4082−4086.
2. For a recent review on C‐C activation, see: (a) Li, H.; Shi,
Z.‐J. Catalysis in C‐C Activation, Edited by Shi, Z.‐J. Ho‐
mogeneous Catalysis for Unreactive Bond Activation
7. For selected examples, see: (a) Kajita, Y.; Matsubara, S.;
Kurahashi, T. Nickel‐Catalyzed Decarbonylative Addition
of Phthalimides to Alkynes. J. Am. Chem. Soc. 2008, 130,
6058‐6059. (b) Miura, T.; Yamauchi, M.; Murakami, M.
ACS Paragon Plus Environment