C.J. Morten, T.F. Jamison / Tetrahedron 65 (2009) 6648–6655
6655
Me-substituted epoxides under acidic conditions, see: (f) Xiong, Z.; Corey, E. J.
J. Am. Chem. Soc. 2000, 122, 9328.
14. Morten, C. J.; Jamison, T. F. J. Am. Chem. Soc. 2009, 131, 6678.
15. (a) Schiavelli, M. D.; Plunkett, J. J.; Thompson, D. W. J. Org. Chem. 1981, 46, 807;
(b) Ewing, J. C.; Ferguson, G. S.; Moore, D. W.; Shultz, F. W.; Thompson, D. W.
J. Org. Chem. 1985, 50, 2124.
16. (a) Kaneda, K.; Kawamoto, F.; Fujiwara, Y.; Imanaka, T.; Teranishi, S. Tetrahedron
Lett. 1974, 12, 1067; (b) Kaneda, K.; Uchiyama, T.; Fujiwara, Y.; Imanaka, T.;
Teranishi, S. J. Org. Chem. 1979, 44, 55.
17. A racemic synthesis of 4 was reported by Bowman and McDonald: (a) Bowman,
J. L.; McDonald, F. E. J. Org. Chem. 1998, 63, 3680; (þ)-4, the enantiomer of 4, has
been prepared by the Nakata group: (b) Matsuo, G.; Hinou, H.; Koshino, H.;
Suenaga, T.; Nakata, T. Tetrahedron Lett. 2000, 41, 903; (c) Suzuki, K.; Nakata, T.
Org. Lett. 2002, 4, 2739. A previous asymmetric synthesis of 4 by the Jamison
group is reported in Ref. 10a. We report a streamlined gram-scale synthesis of 4,
requiring five steps from 2,3-dihydropyran, in Supplementary data to Ref. 14.
18. Initial report: (a) Van Horn, D. E.; Negishi, E. J. Am. Chem. Soc. 1978, 100, 2252;
Successful carbometallation in the presence of free hydroxyl groups: (b) Rand,
C. L.; Van Horn, D. E.; Moore, M. W.; Negishi, E.-I. J. Org. Chem. 1981, 46, 4093;
Recent review: (c) Negishi, E.-I. Dalton Trans. 2005, 827.
i-PrOH, 20 mL/min; tR of desired diastereomer¼11.9 min) to afford 42
22
free of 20 and in 15:1 to 20:1 overall dr (depending on batch); [
a]
D
(for a sample in 20:1 dr) ꢁ7.5 (c 3.3, CDCl3).
IR (thin film, NaCl) 3072, 2958, 2930, 2857, 1590, 1472, 1462,
1428, 1379, 1102 cmꢁ1
.
1H NMR (500 MHz, CDCl3)
d
7.71–7.66 (m, 4H), 7.46–7.41 (m,
2H), 7.40–7.36 (m, 4H), 3.85–3.80 (m, 1H), 3.43 (ddd, J¼9.3, 4.8,
4.5 Hz, 1H), 3.29 (app td, J¼9.3, 2.5 Hz, 1H), 2.93 (app t, J¼6.1 Hz,
1H), 2.89 (app t, J¼6.0 Hz, 1H), 2.11 (ddd, J¼14.4, 6.4, 2.7 Hz, 1H),
1.85–1.80 (m, 1H), 1.77–1.73 (m, 2H), 1.60 (ddd, J¼14.9, 9.5, 5.8 Hz,
1H), 1.51–1.39 (m, 3H), 1.33 (app s, 6H), 1.27 (s, 3H), 1.04 (s, 9H); 13C
NMR (100 MHz, CDCl3) d 136.1,136.1,134.7,133.6,130.0,129.8,127.9,
127.7, 81.4, 72.5, 67.9, 61.3, 61.2, 58.8, 58.0, 38.2, 33.5, 31.8, 27.2,
25.6, 24.9, 19.5, 19.0, 17.3.
HRMS (ESI) m/z calcd for C30H42O4Si (MþNa)þ: 517.2745, found:
517.2751.
19. Wipf, P.; Lim, S. Angew. Chem., Int. Ed. Engl. 1993, 32, 1068.
20. Marfat, A.; McQuirk, P. R.; Helquist, P. Tetrahedron Lett. 1978, 19, 1363.
21. For
a general review of the 1,2-difunctionalization of alkynes via metal-
Acknowledgements
lometalation, see: (a) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435; For
a recent review of silylcupration, see: (b) Barbero, A.; Pulido, F. J. Acc. Chem. Res.
2004, 37, 817; For a recent review of stannylcupration, see: (c) Barbero, A.;
Pulido, F. J. Chem. Soc. Rev. 2005, 34, 913.
This work was supported by the NIGMS (GM72566). C.J.M.
thanks the George Bu¨chi Summer Graduate Fellowship for fellow-
ship support. Li Li (MIT) acquired HRMS data. We are grateful also to
Dr. Jeffery A. Byers, Dr. Aaron Van Dyke, Ivan Vilotijevic, and Brian S.
Underwood (all of MIT) for many helpful discussions. Without their
insights this work would not have been possible.
22. The conditions that effected a trace of the desired product were taken from:
Barbero, A.; Cuadrado, P.; Flemin, I.; Gonzalez, A. M.; Pulido, F. J.; Rubio, R.
J. Chem. Soc., Perkin Trans. 1 1993, 1657.
23. Nagamitsu, T.; Takano, D.; Fukuda, T.; Otoguro, K.; Kuwajima, I.; Harigaya, Y.;
Omura, S. Org. Lett. 2004, 6, 1865.
24. For a few examples of the manifold potential electrophilic quenches and
transmetalation possibilities open to alkenylaluminum and alkenylcopper
species, including conjugated additions, transmetalation to Pd, and subsequent
cross-coupling, see: (a) Marfat, A.; McQuirk, P. R.; Kramer, R.; Helquist, P. J.
J. Am. Chem. Soc. 1977, 99, 253; (b) Okukado, N.; Negishi, E.-I. Tetrahedron Lett.
1978, 27, 2357; (c) Matsushita, H.; Negishi, E.-I. J. Am. Chem. Soc. 1981, 103, 2882;
(d) Williams, D. R.; Shamin, K. Org. Lett. 2005, 7, 4161; (e) DeBergh, J. R.; Spivey,
K. M.; Ready, J. M. J. Am. Chem. Soc. 2008, 130, 7828.
´
References and notes
1. Wilson, S. R.; Zucker, P. A. J. Org. Chem. 1988, 53, 4682.
2. Nicolaou, K. C.; Frederick, M. O.; Aversa, R. J. Angew. Chem., Int. Ed. 2008, 47, 7182.
3. (a) Nakanishi, K. Toxicon 1985, 23, 473; (b) Lee, M. S.; Qin, G.-w.; Nakanishi,
K.; Zagorski, M. G. J. Am. Chem. Soc. 1989, 111, 6234; (c) Shimizu, Y. In Natural
Toxins: Animal, Plant, and Microbial; Harris, J. B., Ed.; Clarendon: Oxford,
1986; p 123.
25. (a) Thadani, A. N.; Rawal, V. H. Org. Lett. 2002, 4, 4317; (b) Thadani, A. N.; Rawal,
V. H. Org. Lett. 2002, 4, 4321.
26. Hoye, T. R.; Wang, J. J. Am. Chem. Soc. 2005, 127, 6950.
27. Ba¨ckvall, J.-E.; Nilsson, Y. I. M.; Gatti, R. G. P. Organometallics 1995, 14, 4242.
28. Winstein, S.; Young, W. G. J. Am. Chem. Soc. 1936, 58, 104.
29. Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 2719.
30. The addition of NaHCO3 was found to improve yield slightly. Remarkably,
a trace of silyl ether cleavage was observed in the absence of this base, pre-
sumably due to a small quantity of HBr in solution.
31. For discussions of improving the stereoselectivity and reactivity of cross me-
tatheses, see: (a) Blackwell, H. E.; O’Leary, D. J.; Chatterjee, A. K.; Washenfelder,
R. A.; Bussmann, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 58; (b)
Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003,
125, 11360; For a recent review, see: (c) Connon, S. J.; Blecher, S. Angew. Chem.,
Int. Ed. 2003, 42, 1900.
4. Gallimore, A. R.; Spencer, J. B. Angew. Chem., Int. Ed. 2006, 45, 4406.
5. (a) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119,
11224; (b) Frohn, M.; Dalkiewicz, M.; Tu, Y.; Wang, Z.-X.; Shi, Y. J. Org. Chem.
1998, 63, 2948; (c) Shi, Y. Acc. Chem. Res. 2004, 37, 488.
6. (a) Carruthers, W.; Coldham, I. Modern Methods of Organic Synthesis; Cam-
bridge: Cambridge, UK, 2006; pp 105–158; (b) Preparation of Alkenes, A Practical
Approach; Williams, J. M. J., Ed.; Oxford: New York, NY, 1996; (c) Flynn, A. B.;
Ogilvie, W. W. Chem. Rev. 2007, 107, 4698.
7. Bordwell, F. G.; Drucker, G. E.; Fried, H. E. J. Org. Chem. 1981, 46, 632.
8. The bond dissociation energy of the doubly allylic C–H bonds in 1,4-pentadiene
is quite low; it has been measured at 68.5 kcal/mol. See: McMahon, T. B.;
Kebarle, P. J. Am. Chem. Soc. 1974, 96, 5940.
32. Patel, J.; Mujcinovic, S.; Jackson, W. R.; Robinson, A. J.; Serelis, A. K.; Such, C.
Green Chem. 2006, 8, 450.
33. Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000,
122, 8168.
9. Hixson, S. S.; Mariano, P. S.; Zimmerman, H. E. Chem. Rev. 1973, 73, 531.
10. (a) Heffron, T. P.; Jamison, T. F. Org. Lett. 2003, 5, 2339; (b) Heffron, T. P.; Trenkle,
J. D.; Jamison, T. F. Tetrahedron 2003, 59, 8913; (c) Simpson, G. L.; Heffron, T. P.;
Merino, E.; Jamison, T. F. J. Am. Chem. Soc. 2006, 128, 1056.
34. Van Dyke, A. R; Jamison, T. F Angew. Chem., Int. Ed. 2009, 48, 4430.
35. Wang, Y. D.; Kimball, G.; Prashad, A. S.; Wang, Y. Tetrahedron Lett. 2005, 46, 8777.
36. Pereira, S.; Srebnik, M. Organometallics 1995, 14, 3127.
37. Ishiyama, T.; Yamamoto, M.; Miyaura, N. Chem. Lett. 1996, 25, 1117.
38. For an overview of the bulky, electron-rich biaryl phosphines developed by the
Buchwald group, see: (a) Mauger, C. C.; Mignani, G. A. Aldrichimica Acta 2006,
39, 17; (b) Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346, 1599; (c) Fors,
B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130,
13552 and references therein.
11. Vilotijevic, I.; Jamison, T. F. Science 2007, 317, 1189.
12. In Scheme 1, distal Me groups are shown in red and proximal in blue, for clarity.
13. For examples of highly endo-regioselective intramolecular opening of distally
Me-substituted epoxides under acidic conditions, see: (a) Bravo, F.; McDonald,
F. E.; Neiwert, W. A.; Do, B.; Hardcastle, K. I. Org. Lett. 2003, 5, 2123; (b) Bravo,
F.; McDonald, F. E.; Neiwert, W. A.; Hardcastle, K. I. Org. Lett. 2004, 6, 4487; (c)
Valentine, J. C.; McDonald, F. E.; Neiwert, W. A.; Hardcastle, K. I. J. Am. Chem.
Soc. 2005, 127, 4586; (d) Wan, S.; Gunaydin, H.; Houk, K. N.; Floreancig, P. E.
J. Am. Chem. Soc. 2007, 129, 7915; (e) Morimoto, Y.; Nishikawa, Y.; Ueba, C.;
Tanaka, T. Angew. Chem., Int. Ed. 2006, 45, 810; For a canonical example of
39. Nieto, N.; Molas, P.; Benet-Buchholz, J.; Vidal-Ferran, A. J. Org. Chem. 2005, 70,
10143.
highly
exo-regioselective
intramolecular
opening
of
proximally