1262
M. T. C. Walvoort et al. / Carbohydrate Research 345 (2010) 1252–1263
7. Larsen, K.; Worm-Leonhard, K.; Olsen, P.; Hoel, A.; Jensen, K. J. Org. Biomol.
3. Summary and conclusion
Chem. 2005, 3, 3966–3970.
8. (a) Douglas, N. L.; Ley, S. V.; Lucking, U.; Warriner, S. L. J. Chem. Soc., Perkin
Trans. 1 1998, 51–65; (b) Koeller, K. M.; Wong, C.-H. Chem. Rev. 2000, 100,
4465–4493; (c) Ritter, T. K.; Mong, K. K. T.; Liu, H. T.; Nakatani, T.; Wong, C.-H.
Angew. Chem., Int. Ed. 2003, 42, 4657–4660; (d) Codée, J. D. C.; Litjens, R. E. J. N.;
van den Bos, L. J.; Overkleeft, H. S.; van der Marel, G. A. Chem. Soc. Rev. 2005, 34,
769–782.
9. For the influence of substituent effects on the hydrolysis of glycosides, see for
example: (a) Jensen, H. H.; Bols, M. Acc. Chem. Res. 2006, 39, 259–265; (b)
Jensen, H. H.; Lyngbye, L.; Bols, M. Angew. Chem., Int. Ed. 2001, 40, 3447–3449;
(c) Withers, S. G.; Percival, M. D.; Street, I. P. Carbohydr. Res. 1989, 187, 43–66;
(d) Namchuk, M. N.; McCarter, J. D.; Becalski, A.; Andrews, T.; Withers, S. G. J.
Am. Chem. Soc. 2000, 122, 1270–1277; (e) McDonnell, C.; López, O.; Murphy, P.;
Bolaños, J. G. F.; Hazell, R.; Bols, M. J. Am. Chem. Soc. 2004, 126, 12374–12385.
10. (a) Imamura, A.; Ando, H.; Korogi, S.; Tanabe, G.; Muraoka, O.; Ishida, H.; Kiso,
M. Tetrahedron Lett. 2003, 44, 6725–6728; (b) Adinolfi, M.; Iadonisi, A.;
Schiattarella, M. Tetrahedron Lett. 2003, 44, 6479–6482.
11. (a) Ustyuzhanina, N.; Komarova, B.; Zlotina, N.; Krylov, V.; Gerbst, A.; Tsvetkov,
Y.; Nifantiev, N. Synlett 2006, 921–923; (b) Baek, J. Y.; Lee, B. Y.; Jo, M. G.; Kim,
K. S. J. Am. Chem. Soc. 2009, 131, 17705–17713; (c) Crich, D.; Cai, W.; Dai, Z. J.
Org. Chem. 2000, 65, 1291–1297.
12. (a) Cheng, Y. P.; Chen, H. T.; Lin, C. C. Tetrahedron Lett. 2002, 43, 7721–7723; (b)
De Meo, C.; Kamat, M. N.; Demchenko, A. V. Eur. J. Org. Chem. 2005, 706–711;
(c) Demchenko, A. V.; Rousson, E.; Boons, G. J. Tetrahedron Lett. 1999, 40, 6523–
6526.
13. (a) Crich, D.; Hu, T. S.; Cai, F. J. Org. Chem. 2008, 73, 8942–8953; (b) van Boeckel,
C. A. A.; Beetz, T.; van Aelst, S. F. Tetrahedron 1984, 40, 4097–4107.
14. (a) Crich, D.; Sun, S. X. J. Am. Chem. Soc. 1997, 119, 11217–11223; (b) Crich, D. J.
Carbohydr. Chem. 2002, 21, 667–690.
15. Gridley, J. J.; Osborn, H. M. I. J. Chem. Soc., Perkin Trans. 1 2000, 10, 1471–1491.
16. Horenstein, N. A. Adv. Phys. Org. Chem. 2006, 41, 275–314.
17. Schmidt, R. R.; Michel, J. Angew. Chem., Int. Ed. 1980, 19, 731–732.
18. (a) Lemieux, R. U.; Hayami, J. I. Can. J. Chem. 1965, 43, 2162–2173; (b) Lemieux,
R. U.; Hendriks, K. B.; Stick, R. V.; James, K. J. Am. Chem. Soc. 1975, 97, 4056–
4062.
19. (a) Jensen, H. H.; Nordstrom, L. U.; Bols, M. J. Am. Chem. Soc. 2004, 126, 9205–
9213; (b) Fraser-Reid, B.; Wu, Z. F.; Andrews, C. W.; Skowronski, E.; Bowen, J. P.
J. Am. Chem. Soc. 1991, 113, 1434–1435; (c) Andrews, C. W.; Rodebaugh, R.;
Fraser-Reid, B. J. Org. Chem. 1996, 61, 5280–5289; (d) Crich, D.; Vinogradova, O.
J. Org. Chem. 2006, 71, 8473–8480; (e) Crich, D.; Li, L. F. J. Org. Chem. 2007, 72,
1681–1690.
20. (a) Crich, D.; Sun, S. X. Tetrahedron 1998, 54, 8321–8348; (b) Crich, D.; Sun, S. X.
J. Am. Chem. Soc. 1998, 120, 435–436; (c) Kim, K. S.; Kim, J. H.; Lee, Y. J.; Park, J. J.
Am. Chem. Soc. 2001, 123, 8477–8481; (d) Baek, J. Y.; Choi, T. J.; Jeon, H. B.; Kim,
K. S. Angew. Chem., Int. Ed. 2006, 45, 7436–7440; (e) Codée, J. D. C.; Krock, L.;
Castagner, B.; Seeberger, P. H. Chem. Eur. J. 2008, 14, 3987–3994; (f) Tanaka, K.;
Mori, Y.; Fukase, K. J. Carbohydr. Chem. 2009, 28, 1–11; (g) Koshiba, M.; Suzuki,
N.; Arihara, R.; Tsuda, T.; Nambu, H.; Nakamura, S.; Hashimoto, S. Chem. Asian J.
2008, 3, 1664–1677.
En route to the synthesis of alginate oligosaccharides we found
that the formation of 1,2-cis L-gulosidic and 1,2-cis D-mannuronic
ester linkages proceeds with unexpected high stereoselectivity.
Commonly, a reaction mechanism involving either SN2-like substi-
tution of an anomeric leaving group, such as a triflate, or selective
attack at C-1 directed by the anomeric effect is employed to account
for the formation of 1,2-cis glycosides. Because the stereoselective
formation of the 1,2-cis L-gulosidic linkages is difficult to reconcile
with such a reaction mechanism, we have postulated that the inter-
mediate gulosyl oxacarbenium ion is at the basis of the observed
selectivity. In line with kinetic studies on the hydrolysis of glyco-
sidic bonds,9e,31e computational data and in particular mechanistic
studies on the influence of oxacarbenium ion conformers on the
stereochemical outcome of C-glycosylations by the group of Woer-
pel, it can be reasoned that activation of L-gulopyranosyl donors
leads to the preferential formation of the 3H4 oxacarbenium ion.
An incoming nucleophile selectively attacks this ion on the
diastereotopic face that leads to the chair product, which explains
the observed
a-selectivity. The selective formation of 1,2-cis
D
-mannuronic ester linkages also fits this mechanism, in which
the C-5 carboxylate ester preferentially occupies a pseudo-axial ori-
entation in a half chair oxacarbenium ion. However, the glycosyla-
tions of mannurate esters can also occur via an SN2-like attack on
the a-triflate. Low-temperature NMR studies on mannosaziduronic
acid ester triflates guided us to the point of view that glycosylations
of mannuronate esters most probably occur through an asymmetric
exploded transition state, following an SN2-like pathway with
significant oxacarbenium ion character, the extent of which is
determined by the nature of the nucleophile. The anomeric
a-tri-
flate and the preferential formation of the 3H4 oxacarbenium ion
work in concert in the formation of the 1,2-cis mannuronic ester
linkages. In conclusion, not only the anomeric effect, but also
oxacarbenium ion conformers, their stability and their stereochem-
ical preference in reacting with nucleophiles are to be considered as
contributing factors in the interpretation of the stereochemical
outcome of glycosylation reactions that proceed through interme-
diates which display significant oxacarbenium ion character.
21. (a) Crich, D.; Chandrasekera, N. S. Angew. Chem., Int. Ed. 2004, 43, 5386–5389;
(b) El-Badri, M. H.; Willenbring, D.; Tantillo, D. J.; Gervay-Hague, J. J. Org. Chem.
2007, 72, 4663–4672.
22. (a) Crich, D.; Dudkin, V. Tetrahedron Lett. 2000, 41, 5643–5646; (b) Codée, J. D.
C.; Hossain, L. H.; Seeberger, P. H. Org. Lett. 2005, 7, 3251–3254.
23. (a) Crich, D.; Vinogradova, O. J. Org. Chem. 2006, 71, 8473–8480; (b) Crich, D.;
Li, L. F. J. Org. Chem. 2007, 72, 1681–1690.
24. (a) Ionescu, A. R.; Whitfield, D. M.; Zgierski, M. Z.; Nukada, T. Carbohydr. Res.
2006, 341, 2912–2920; (b) Whitfield, D. M. Adv. Carbohydr. Chem. Biochem.
2009, 62, 83–159.
Acknowledgments
This work was supported by Top Institute Pharma and The
Netherlands Organization of Scientific Research (NWO, vidi
grant).
25. (a) Denekamp, C.; Sandlers, Y. J. Mass Spectrom. 2005, 40, 765–771; (b)
Denekamp, C.; Sandlers, Y. J. Mass Spectrom. 2005, 40, 1055–1063.
26. Zhu, X. M.; Kawatkar, S.; Rao, Y.; Boons, G. J. J. Am. Chem. Soc. 2006, 128, 11948–
11957.
27. Bear, T. J.; Shaw, J. T.; Woerpel, K. A. J. Org. Chem. 2002, 67, 2056–2064.
28. (a) Tamura, S.; Abe, H.; Matsuda, A.; Shuto, S. Angew. Chem., Int. Ed. 2003, 42,
1021–1023; (b) Abe, H.; Shuto, S.; Matsuda, A. J. Am. Chem. Soc. 2001, 123,
11870–11882; (c) Terauchi, M.; Abe, H.; Matsuda, A.; Shuto, S. Org. Lett. 2004,
6, 3751–3754.
References
1. (a) Boltje, T. J.; Buskas, T.; Boons, G. J. Nat. Chem. 2009, 1, 611–622; (b)
Carmona, A. T.; Moreno-Vargas, A. J.; Robina, I. Curr. Org. Synth. 2008, 5, 33–60;
(c) Zhu, X. M.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900–1934;
(d)Comprehensive Glycoscience; Kamerling, J. P., Ed.; Elsevier: Oxford, 2007; Vol.
1, (e)The Organic Chemistry of Sugars; Levy, D. E., Fügedi, P., Eds.; CRC Press:
Boca Raton, 2006; (f)Handbook of Chemical Glycosylation: Advances in
Stereoselectivity and Therapeutic Relevance; Demchenko, A. V., Ed.; Wiley-VCH:
Weinheim, 2008.
29. Stevens, R. V. Acc. Chem. Res. 1984, 17, 289–296.
30. Ayala, L.; Lucero, C. G.; Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A. J. Am.
Chem. Soc. 2003, 125, 15521–15528.
2. (a) Lemieux, R. U. Adv. Carbohydr. Chem. 1954, 9, 1–57; (b) Kunz, H.; Pfrengle,
W. J. Chem. Soc., Chem. Commun. 1986, 713–714.
31. (a) Chamberland, S.; Ziller, J. W.; Woerpel, K. A. J. Am. Chem. Soc. 2005, 127,
5322–5323; (b) Baghdasarian, G.; Woerpel, K. A. J. Org. Chem. 2006, 71, 6851–
6858; (c) Shenoy, S. R.; Smith, D. M.; Woerpel, K. A. J. Am. Chem. Soc. 2006, 128,
8671–8677; (d) Yang, M. T.; Woerpel, K. A. J. Org. Chem. 2009, 74, 545–553; (e)
Smith, D. M.; Woerpel, K. A. Org. Biomol. Chem. 2006, 4, 1195–1201.
32. (a) Bols, M.; Liang, X. F.; Jensen, H. H. J. Org. Chem. 2002, 67, 8970–8974; (b)
Liang, G. Y.; Sorensen, J. B.; Whitmire, D.; Bowen, J. P. J. Comput. Chem. 2000, 21,
329–339; (c) Miljkovic, M.; Yeagley, D.; Deslongchamps, P.; Dory, Y. L. J. Org.
Chem. 1997, 62, 7597–7604.
3. (a) Demchenko, A. V. Synlett 2003, 1225–1240; (b) Kochetkov, N. K.; Klimov, E.
M.; Malysheva, N. N.; Demchenko, A. V. Carbohydr. Res. 1991, 212, 77–91.
4. For developments towards a general method for the construction of 1,2-cis
glucosidic and galactosidic bonds see: (a) Kim, J.-H.; Yang, H.; Park, J.; Boons, G.
J. J. Am. Chem. Soc. 2005, 127, 12090–12097; (b) Kim, J.-H.; Yang, H.; Khot, V.;
Whitfield, D.; Boons, G. J. Eur. J. Org. Chem. 2006, 22, 5007–5028; (c) Fascione,
M. A.; Adshead, S. J.; Stalford, S. A.; Kilner, C. A.; Leach, A. G.; Turnbull, W. B.
Chem. Commun. 2009, 5841–5843.
33. Lucero, C. G.; Woerpel, K. A. J. Org. Chem. 2006, 71, 2641–2647.
34. (a) Codée, J. D. C.; van den Bos, L. J.; de Jong, A. R.; Dinkelaar, J.; Lodder, G.;
Overkleeft, H. S.; van der Marel, G. A. J. Org. Chem. 2009, 74, 38–47; (b)
Dinkelaar, J.; van den Bos, L. J.; Hogendorf, W. F. J.; Lodder, G.; Overkleeft, H. S.;
Codée, J. D. C.; van der Marel, G. A. Chem. Eur. J. 2008, 14, 9400–9411; (c) van
5. (a) Kobashi, Y.; Mukaiyama, T. Chem. Lett. 2004, 33, 874–875; (b) Schmidt, R. R.;
Michel, J. Angew. Chem., Int. Ed. Engl. 1980, 19, 731–732.
6. (a) Schmidt, R. R.; Behrendt, M.; Toepfer, A. Synlett 1990, 694–696; (b) Ishiwata,
A.; Munemura, Y.; Ito, Y. Tetrahedron 2008, 64, 92–102; (c) Demchenko, A.;
Stauch, T.; Boons, G. J. Synlett 1997, 818–820.