S. Kathiravan et al. / Tetrahedron Letters 50 (2009) 2389–2391
2391
10. Jenn, T.; Heissler, D. Tetrahedron 1998, 54, 97–106.
11. Grassi, D.; Lippuner, V.; Aebi, M.; Brunner, J.; Vasella, A. J. Am. Chem. Soc. 1997,
119, 10992–10999.
refluxed at 80 °C for 4–6 h till the completion of the reaction as evidenced by
TLC. The reaction mixture was concentrated in vacuo and diluted with water
(50 mL) .The aqueous layer was extracted with ethyl acetate (4 Â 20 mL), the
combined organic layers were dried (MgSO4) and the solvent was removed in
vacuo. The crude product was subjected to column chromatography (100–
200 mesh) using a hexane–ethyl acetate mixture (8:2).(E)-Methyl 2-((2-formyl-
1H-pyrrol-1-yl)methyl)-3-phenylacrylate 4a: Viscous liquid, Yield: 92%. IR (KBr):
12. Hoffmann, H. M. R.; Rabe, J. . J. Org. Chem. 1985, 50, 3849–3859.
13. Moiseenkov, A. M.; Cheskis, B. A.; Shapiro, N. A.; Stashina, G. A.; Zhulin, V. M.
Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1990, 39, 517–521.
14. Cheskis, B. A.; Moiseenkov, A. M.; Shapiro, N. A.; Stashina, G. A.; Zhulin, V. M.
Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1990, 39, 716–720.
15. Mateus, C. R.; Feltrin, M. P.; Costa, A. M.; Coelho, F.; Almeida, W. P. Tetrahedron
2001, 57, 6901–6908.
16. Basavaiah, D.; Hyma, R. S. Tetrahedron 1996, 52, 1253–1258.
17. Deng, J.; Hu, X. P.; Huang, J. D.; Yu, S. B.; Dao-Yong Wang, D. Y.; Duan, Z. C.;
Zheng, Z. J. Org. Chem. 2008, 73, 2015–2017.
18. Fernandes, L.; Bortoluzzi, A. J.; Sá, M. M. Tetrahedron 2004, 60, 9983–9989.
19. Poornachandran, M.; Raghunathan, R. Tetrahedron 2008, 64, 6461–6474.
20. Poornachandran, M.; Raghunathan, R. Tetrahedron: Asymmetry 2008, 19, 2177–
2183.
21. Arumugam, N.; Jayashankaran, J.; Rathnadurga, R.; Raghunathan, R.
Tetrahedron 2005, 61, 8512–8516.
1675, 1715 cmÀ1 1H NMR (300 MHz, CDCl3): d 3.77(s, 3H), 6.96 (d, J = 1.5 Hz,
,
1H), 6.97 (d, J = 1.8 Hz, 1H), 8.07 (s, 1H), 6.20–6.97 (m, 3H), 7.24–7.37 (m, 5H),
9.57 (s, 1H). 13C NMR (75 MHz, CDCl3): d 45.1, 52.3, 126.6, 128.0, 128.4, 128.5,
129.0, 129.1, 129.7, 131.8, 133.9, 145.1, 167.3, 179.5.
33. Poornachandran, M.; Raghunathan, R. Tetrahedron Lett. 2005, 46, 7197–7200.
34. Ramesh, E.; Raghunathan, R. Tetrahedron Lett. 2008, 49, 1125–1128.
35. Synthesis of cycloadducts: Method A: A solution of an N-allyl derivative of
pyrrole (1 mmol) and cyclic and acyclic amino acids (1 mmol), in anhydrous
toluene (10 mL), was refluxed until the completion of the reaction as evidenced
by TLC analysis. The solvent was removed under vacuum. The crude product
was subjected to column chromatography on silica gel (100–200 mesh) using
petroleum ether–ethyl acetate (7:3) as the eluent.
22. Jayashankaran, J.; Rathnadurga, R.; Raghunathan, R. Tetrahedron Lett. 2004, 45,
7303–7305.
23. Amalraj, A.; Raghunathan, R.; Sridevikumari, M. R.; Raman, N. Bioorg. Med.
Chem. 2003, 11, 407–419.
24. Subramaniyan, G.; Raghunathan, R.; Martin Castro, A. M. Synthesis 2002, 2440–
2445.
Method B: A mixture of an N-allyl derivative of pyrrole (1 mmol), cyclic and
acyclic amino acids (1 mmol), in anhydrous toluene (10 mL), was irradiated by
microwave irradiations until the disappearance of the starting materials (1–
2 min, monitored by TLC). After standing for 1 h, the reaction mixture was
concentrated under vacuum and the crude mixture was purified by column
chromatography to afford the pure product.
25. Subramaniyan, G.; Raghunathan, R. Tetrahedron 2001, 57, 2909–2913.
26. Amalraj, A.; Raghuanthan, R. Tetrahedron 2001, 57, 10293–10298.
27. Suresh Babu, A. R.; Raghunathan, R. Tetrahedron Lett. 2007, 48, 6809–6813.
28. Ramesh, E.; Kathiresan, K.; Raghunathan, R. Tetrahedron Lett. 2007, 48, 1835–
1839.
29. Suresh Babu, A. R.; Raghunathan, R. Tetrahedron Lett. 2008, 49, 4487–4490.
30. Kim, J. N.; Lee, H. J.; Gong, J. H. Tetrahedron Lett. 2002, 43, 9141–9146.
31. Basavaiah, D.; Roy, S. Org. Lett. 2008, 10, 1819–1822.
32. Synthesis and spectral data for new compounds: Path A: To a refluxing solution of
Methyl 1,2,3,3a,4,8b-hexahydro-1-methyl-3-phenylpyrrolo[2,3-a]pyrrolizine-3a-
carboxylate 6a: Yield: 85% IR (KBr): 1712 cmÀ1
,
Mp: 80 °C, 1H NMR
(300 MHz, CDCl3): d 2.51 (s, 3H), 2.79 (t, J = 9.6 Hz, 1H), 3.09 (dd, J = 6.6,
3.0 Hz, 1H), 3.55 (d, J = 11.7 Hz, 1H), 3.76 (s, 3H), 4.02 (d, J = 11.7 Hz, 1H), 4.05
(dd, J = 6.9, 4.2 Hz, 1H), 4.67 (s, 1H), 5.88–6.39 (m, 3H), 7.00–7.23 (m, 5H). 13C
NMR (75 MHz, CDCl3): d 30.9, 38.3, 49.8, 50.4, 52.9, 58.3, 67.2, 102.0, 113.0,
114.3, 127.2, 128.5, 128.6, 138.4, 175.0. MS (EI) m/z = 296.15 (M+) Anal. Calcd
for C18H20N2O2: C, 72.96; H, 6.80; N, 9.45. Found: C, 73.08; H, 6.92; N, 9.37.
Methyl
1,2,3,3a,4,8b-hexahydro-3-phenylthiopyrrolizine[2,3-a]pyrrolizine-3a-
pyrrole 2-carbaldehyde (20 mmol), K2CO3 (25 mmol) in 25 ml of DMF,
a
carboxylate 9d:Yield: 84% Viscous liquid, IR (KBr): 1709 cmÀ1
,
1H NMR
Baylis–Hillman derivative (22 mmol) was added. The reaction mixture was
stirred for 4–6 h at room temperature, and diluted with water (50 mL). The
aqueous layer was extracted with ethyl acetate (4 Â 20 mL), the combined
organic layers were dried (MgSO4) and the solvent was removed in vacuo .The
crude product was subjected to column chromatography (100–200 mesh)
using a hexane–ethyl acetate mixture (8:2).Path B: To a refluxing solution of
pyrrole 2-carbaldehyde (20 mmol), K2 CO3 (25 mmol) in 25 ml of acetone, a
Baylis–Hillman bromide (22 mmol) was added. The reaction mixture was
(300 MHz, CDCl3): 3.77 (s, 3H), 3.9 (d, 3.3 Hz, 1H), 3.9 (m, 1H), 3.02 (dd,
J = 4.2, 5.4 Hz, 1H), 3.21 (dd, J = 4.8, 5.3 Hz, 1H), 4.34 (d, J = 9.9 Hz, 1H), 4.28 (d,
J = 10.2 Hz, 1H), 4.02 (d, J = 9.9 Hz, 1H), 3.87 (d, J = 9.9 Hz, 1H), 4.61 (s, 1H),
5.97–6.46 (m, 3H), 7.23–7.36 (m, 5H).
13C NMR (75 MHz, CDCl3): 37.1, 50.4, 53.1, 54.1, 58.3, 68.7, 69.8, 75.7, 109.8,
112.7, 114.7, 127.5, 128.8, 129.6, 135.2, 139.0, 174.4. MS (EI) m/z = 340.10 (M+).
Anal. Calcd for C19H20N2O2S: C, 67.03; H, 5.92; N, 8.23. Found: C, 67.17; H, 6.03;
N, 8.14.