2106
Y. Xu et al. / Bioorg. Med. Chem. Lett. 19 (2009) 2103–2106
Table 3
Supplementary data
The MIC values (lM/L) of neamine and its three derivatives 3, 6 and 9
Compd
E. coli
S. aureus
P. aeruginos
Supplementary data associated with this article can be found, in
Neamine
3 (NE)
6 (NEA)
9 (NEL)
50
100
100
50
50
>100
50
>100
>100
>100
>100
25
References and notes
1. Sucheck, S. J.; Wong, C. H. Curr. Opin. Chem. Biol. 2000, 4, 678.
2. Ecker, D. J.; Griffey, R. H. Drug Discovery Today 1999, 4, 420.
3. Ramakrishna, V.; Moore, P. B. Curr. Opin. Struct. Biol. 2001, 11, 144.
4. Fourmy, D. I.; Recht, M.; Puglisi, J. D. J. Mol. Biol. 1998, 277, 347.
5. Mei, H. Y.; Cui, M.; Heldsinger, A.; Heldsinger, A.; Lemrow, S. M.; Loo, J. A.;
Sannes-Lowery, K. A.; Sharmeen, L.; Czarnik, A. W. Biochemistry 1998, 37, 14204.
6. Gait, M. J.; Karn, J. Trends Biochem. Sci. 1993, 18, 255.
7. Mei, H. Y.; Galan, A. A.; Halim, N. S.; Mack, D. P.; Moreland, D. W.; Sanders, K. B.;
Truong, H. N.; Czarnikt, A. W. Bioorg. Med. Chem. Lett. 1995, 5, 2755.
8. Koeda, T.; Umemura, K.; Yokoda, M.. In Aminoglycoside Antibiotics; Umezawa,
H., Hooper, I. R., Eds.; Springer: Berlin, New York, 1982; Vol. 62, p 293.
9. Tanaka, N. Arch. Pharm. Res. 1983, 6, 93.
10. Greenberg, W. A.; Priestley, E. S.; Sears, P. S.; Alper, P. B.; Rosenbohm, C.;
Hendrix, M.; Hung, S. C.; Wong, C. H. J. Am. Chem. Soc. 1999, 121, 6527.
11. Silva, G. S.; Carvalho, I. Curr. Med. Chem. 2007, 14, 1101.
12. Zhou, J.; Wang, G. N.; Zhang, L. H.; Ye, X. S. Med. Res. Rev. 2007, 27, 279.
13. Calnan, B. J.; Tidor, B.; Biancalana, S.; Hudson, D.; Frankel, A. D. Science 1991,
252, 1167.
14. Weeks, K. M.; Ampe, C.; Schultz, S. C.; Steitz, T. A.; Crothers, D. M. Science 1990,
249, 1281.
15. Litovchick, A.; Evdokimov, A. G.; Lapidot, A. Biochemistry 2000, 39, 2838.
16. Lapidot, A.; Vijayabaskar, V.; Litovchick, A.; Yu, J. G.; James, T. L. FEBS Lett. 2004,
577, 415.
17. Kawamoto, S. A.; Sudhahar, C. G.; Hatfield, C. L.; Sun, J.; Behrman, E. J.; Gopalan,
V. Nucleic Acids Res. 2008, 36, 697.
18. Lapidot, A.; Peled, A.; Berchanski, A.; Pal, B.; Kollet, O.; Lapidot, T.; Borkow, G.
Biochim. Biophys. Acta (BBA) 2008, 1780, 914.
19. Borkow, G.; Lara, H. H.; Lapidot, A. Biochem. Biophys. Res. Commun. 2003, 312, 1047.
20. Borkow, G.; Vijayabaskar, V.; Lara, H. H.; Kalinkovich, A.; Lapidot, A. Antiviral
Res. 2003, 60, 181.
21. Eubank, T. D.; Biswas, R.; Jovanovic, M.; Litovchick, A.; Lapidot, A.; Gopalan, V.
FEBS Lett. 2002, 511, 107.
22. Hamasaki, K.; Ueno, A. Bioorg. Med. Chem. Lett. 2001, 11, 591.
23. Cabrera, C.; Gutierrez, A.; Barretina, J.; Blanco, J.; Litovchick, A.; Lapidot, A.;
Clotet, B.; Este, J. A. Antiviral Res. 2002, 53, 1.
24. Litovchick, A.; Evdokimov, A. G.; Lapidot, A. FEBS Lett. 1999, 445, 73.
25. Lapidot, A.; Vijayabaskar, V.; Litovchick, A.; Yu, J. H.; James, T. L. FEBS Lett. 2004,
577, 415.
26. Hegde, R.; Borkow, G.; Berchanski, A.; Lapidot, A. FEBS J. 2007, 274, 6523.
27. Watanable, K.; Katou, T.; Lkezawa, Y.; Yajima, S.; Shionnoya, H.; Akagi, T.;
Hamasaki, K. Nucleic Acids Symp. Ser. 2007, 51, 209.
28. Yajima, S.; Shionoya, H.; Akagi, T.; Hamasaki, K. Bioorg. Med. Chem. 2006, 14, 2799.
29. Wu, B. G.; Yang, J.; He, Y.; Swayze, E. E. Org. Lett. 2002, 4, 3455.
30. Cai, L.; Li, Q.; Ren, B.; Yang, Z. J.; Zhang, L. R.; Zhang, L. H. Tetrahedron 2007, 63,
8135.
31. Davis, T. M.; Wilson, W. D. Methods Enzymol. 2001, 340, 22.
32. Hendrix, M.; Priestley, Z. S.; Joyce, G. F.; Wong, C. H. J. Am.Chem. Soc. 1997, 119,
3641.
33. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Hucy, R.; Hart, W. E.; Belew, R. K.;
Olson, A. J. J. Comput. Chem. 1998, 19, 1639.
ethylenediamine side chain of compound 3 can also form an elec-
trostatic interaction with POÀ2 of G4 on the A site (Fig. 4a and A).
After conjugation of an arginine or lysine to compound 3, more
interactions including hydrogen bonds and electrostatic interac-
tions are observed between 6 or 9 and the A site of 16S RNA
(Fig. 4b, B, c, and C). Comparing with the molecular modeling of
compound 6 or 9, it shows clearly that the arginine residue in com-
pound 6 contributes only one NH of d-guanidino group and one a-
NH2 group for the interaction with RNA and the ethylenediamine
moiety loses its interaction with RNA. However, in the case of com-
pound 9, the
x-NH2 and a-NH2 of lysine residue and the NH of eth-
ylenediamine part contribute significantly for the interaction with
the A site of 16S RNA. These results are in agreement with the
experimental data and could explain the difference of binding
affinity between compound 6 and 9.
The antibacterial activities of neamine and its three neamine
derivatives against E. coli ATCC 25922, S. aureus ATCC 29213 and
P. aeruginosa (Pseudomonas aeruginosa) ATCC 27853 were deter-
mined, respectively,34 the results are summarized in Table 3. Com-
pound 9 shows some activities against S. aureus (MIC = 25
E. coli (MIC = 50 M). This result exhibits that compound 9 could
be used as a lead for the further structural optimization.
lM) and
l
In summary, three new neamine derivatives 3, 6 and 9 were
synthesized by modifying 5-hydroxyl of neamine. Their binding
affinities to 16S and TAR RNA indicate that the modification to
5-hydroxyl of neamine by amino acid can enhance the binding
affinity of neamine. Compound 9 (NEL) shows more potential of
binding affinity compared with its arginine derivative and exhibits
some antibacterial activities against S. aureus (MIC = 25
lM) and
E. coli (MIC = 50 M). These results demonstrate that lysine mod-
l
ifying at 5-position of neamine may provide a promising way for
the development of potential candidates effectively targeting to
RNAs.
Acknowledgment
This study was supported by the National Natural Science
Foundation of China (20332010) and The Ministry of Science and
Technology of China (2004cb518904).
34. Jorgensen, J. H.; Turnidge, J. D.; Washington, J. A. In Manual of Clinical
Microbiology; Murray, P. R., Baron, E. J. M., Pfaller, A., Tenover, F. C., Yolken, R.
H., Eds., 7th Ed.; ASM: Washington, D.C., 1999; p 1526.