2604
P. M. Abeysinghe et al. / Tetrahedron Letters 50 (2009) 2601–2604
P. S.; Zhong, Y. L. J. Am. Chem. Soc. 2002, 124, 2245–2258; (f) Nicolaou, K. C.;
O
O
Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew. Chem., Int. Ed. 2002, 41, 996–
1000.
7. (a) Nicolaou, K. C.; Mathison, C. J. N. Angew. Chem., Int. Ed. 2005, 44, 5992–5997;
(b) Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. J. Am. Chem. Soc. 2004, 126,
5192–5201.
8. (a) Grogan, M. J.; Pratt, M. R.; Marcaurelle, L. A.; Bertozzi, C. R. Ann. Rev.
Biochem. 2002, 71, 593–634; (b) Hang, H. C.; Bertozzi, C. R. Acc. Chem. Res. 2001,
34, 727–736.
9. (a) Marcaurelle, L. A.; Bertozzi, C. R. Tetrahedron Lett. 1998, 39, 7279–7282; (b)
Marcaurelle, L. A.; Rodriguez, E. C.; Bertozzi, C. R. Tetrahedron Lett. 1998, 39,
8417–8420.
10. Marcaurelle, L. A.; Shin, Y.; Goon, S.; Bertozzi, C. R. Org. Lett. 2001, 3, 3691–
3694.
11. (a) Haase, C.; Seitz, O. Angew. Chem., Int. Ed. 2008, 47, 1553–1556; (b) Besret, S.;
Ollivier, N.; Blanpain, A.; Melnyk, O. J. Peptide Sci. 2008, 14, 1244–1250; (c)
Pentelute, B. L.; Gates, Z. P.; Dashnau, J. L.; Vanderkooi, J. M.; Kent, S. B. H. J. Am.
Chem. Soc. 2008, 130, 9702–9707; (d) Blanco-Canosa, J. B.; Dawson, P. E. Angew.
Chem., Int. Ed. 2008, 47, 6851–6855.
O
HO
O
O
O
I
I
OH
H
HO
O
O
O
H
O
BnO
N
O
BnO
N
H
R
O
R
Me
Me
O
-H O
2
12. Tachibana, Y.; Fletcher, G. L.; Fujitani, N.; Tsuda, S.; Monde, K.; Nishimura, S.-I.
Angew. Chem., Int. Ed. 2004, 116, 856–862.
Me
Me
O
O
R
O
O
13. (a) Benovsky, P.; Stephenson, G. A.; Stille, J. R. J. Am. Chem. Soc. 1998, 120, 2493–
2500; (b) Wipf, P.; Cunningham, A.; Rice, R. L.; Lazo, J. S. Bioorg. Med. Chem.
1997, 5, 165–177; (c) Crescenza, A.; Botta, M.; Corelli, F.; Santini, A.; Tafi, A. J.
Org. Chem. 1999, 64, 3019–3025; (d) Burtscher, P.; Kohler, B.; Metz, Y.; Voges,
R.; Wenger, R. J. Labelled Compd. Radiopharm. 2000, 43, 201–216; (e) Saladino,
R.; Mezzetti, M.; Mincione, E.; Torrini, I.; Paradisi, M. P.; Mastropietro, G. J. Org.
Chem. 1999, 64, 8468–8474.
O
O
BnO
N
H
BnO
N
O
OH
R
H
14. (a) Wipf, P.; Miller, C. P. J. Org. Chem. 1993, 58, 3604–3606; (b) Christensen, C.;
Tornoe, C. W.; Meldal, M. QSAR Comb. Sci. 2004, 23, 109–116; (c) Stachulski, A.
V. Tetrahedron Lett. 1982, 23, 3789–3790; (d) Fehrentz, J. A.; Paris, M.; Heitz, A.;
Velek, J.; Winternitz, F.; Martinez, J. J. Org. Chem. 1997, 62, 6792–6796; (e)
Ganneau, C.; Moulin, A.; Demange, L.; Martinez, J.; Fehrentz, J. A. J. Peptide Sci.
2006, 12, 497–501.
H
+
O
O
= polymer
I
15. Selected data for 6: Purified by flash column chromatography on silica using a
gradient of EtOAc in hexane (10:90)?(60:40); yield of ketone 6 (45 mg, 87%);
mp 66–68 °C; 1H NMR (300 MHz, CDCl3): d 7.50–7.20 (5H, m, ArH), 6.71 (1H, br
s, NH), 5.31(1H, br s, OH, D2O exchangeable), 5.10 (2H, s, ArCH2), 3.82 (3H, s,
OCH3), 2.24 (3H, s, CH3C(O)). 13C NMR (75 MHz, CDCl3): d 197.9 (CH3C(O)),
167.8 (C(O)OCH3), 154.5 (C(O)NH), 135.4, 128.5, 128.3, 128.1 (CAr), 83.9
(NC(OH)C(O)), 67.4 (OCH2Ar), 54.1 (OCH3), 23.0 (CH3). MS (ESI) m/z 304
(M+Na+, 100%). HRMS: calcd for C13H15NO6Na 304.0792 found 304.0797.
16. Four cycles of column chromatography on silica using Et2O:EtOAc:hexane
(6:3:1) permitted isolation of a small amount of 5 for characterisation. 1H NMR
(300 MHz, CDCl3): d 7.50–7.20 (5H, m, ArH), 5.96 (1H, d, J 5.7 Hz, NH), 5.20–
5.00 (3H, m, ArCH2, CH), 3.81 (3H, s, OCH3), 2.37 (3H, s, CH3C(O)). (ESI) m/z 288
(M+Na+, 100%). HRMS: calcd for C13H15NO5Na 288.0848, found 288.0844.
17. Selected data for 8 and 9: ketone 9 (47 mg, 51%); mp 95–97 °C; 1H NMR
(300 MHz, CDCl3): d 7.50–7.20 (10H, m, ArH), 6.92 (1H, br s, NHCH2Ar), 6.68
(1H, br s, NHC(OH)C(O)), 5.42 (1H, br s, OH), 5.11 (2H, s, ArCH2), 4.42 (2H, d, J
5.6 Hz, NHCH2Ar), 2.28 (3H, s, CH3C(O)). 13C NMR (75 MHz, CDCl3): d 201.5
(CH3C(O)), 165.7 (C(O)NH), 136.6, 135.5, 128.7, 128.5, 128.3, 128.1, 127.8,
127.4 (CAr), 85.8 (NHC(OH)), 67.4 (OCH2Ar), 44.1 (NHCH2Ar), 22.8 (CH3). (ESI)
m/z 379 (M+Na+, 100%). HRMS: calcd for C19H20N2O5Na 379.1270, Found
O
HO
Scheme 4.
sponding keto-peptides, which are hydroxylated at the Thr-a C po-
sition. Structure–activity studies of AFGPs have indicated that
modification of the peptide backbone is tolerated,12 and hence
testing of AFGP mimics that are hydroxylated at the a-C of the gly-
cosidated Thr residues may lead to novel new antifreeze com-
pounds. Oxidation of Thr residues in the first generation library
of Thr-containing peptides with pIBX may also be useful in combi-
natorial chemistry. The reaction provides a mechanism to intro-
duce another level of diversity into the peptide library via
a-hydroxylation. In addition, the ke-
tones can be further derivatised by reactions with Schiff bases to
introduce additional diversity into the library.
reaction of the ketone and
379.1271. Ketone
8 isolated as a
colourless oil (22 mg, 25%); 1H NMR
(300 MHz, CDCl3) d 7.50–7.20 (10H, m, ArH), 6.70 (1H, br s, NH), 6.26 (1H, br
s, NH), 5.12 (2H, s, ArCH2), 4.85 (1H, d, J 5.3 Hz, CH), 4.42 (2H, d, J 5.6 Hz,
NHCH2Ar), 2.35 (3H, s, CH3). 13C NMR (75 MHz, CDCl3): d 203.4 (CH3C(O)),
165.2 (C(O)NH), 156.7 (C(O)NH), 137.5, 136.2, 129.2, 129.0, 128.8, 128.6, 128.1,
128.0 (CAr), 68.2 (OCH2Ar), 65.8 (CH), 44.3 (NHCH2Ar), 27.8 (CH3). (ESI) m/z 363
(M+Na+, 100%). HRMS: calcd for C19H20N2O4Na 363.1321, found 363.1314.
18. (a) Petrassi, H. M.; Sharpless, K. B.; Kelly, J. W. Org. Lett. 2001, 3, 139–142; (b)
Johnson, S. M.; Petrassi, H. M.; Palaninathan, S. K.; Mohamedmohaideen, N. N.;
Purkey, H. E.; Nichols, C.; Chiang, K. P.; Walkup, T.; Sacchettini, J. C.; Sharpless,
K. B.; Kelly, J. W. J. Med. Chem. 2005, 48, 1576–1587.
Acknowledgement
Financial support from the Australian Research Council Discov-
ery Grant Scheme is gratefully acknowledged.
19. Selected data for 15 and 16: Less polar oxime 16 (7 mg, 10%); 1H NMR
(300 MHz, CDCl3): d 8.00 (2H, d, J 8.0 Hz, ArH), 7.40–7.30 (5H, m, ArH), 7.17
(2H, d, J 9.0 Hz, ArH), 7.02 (1H, br d, J 7.1 Hz, NH), 6.92 (1H, br d, J 8.2 Hz, NH),
5.32 (1H, d, J 7.5 Hz, CH), 5.10 (2H, s, CH2), 4.20–4.00 (1H, m, NHCHCH(CH3)2),
3.89 (3H, s, OCH3), 3.81 (3H, s, OCH3), 2.30–2.15 (1H, m, CH(CH3)(CH3)), 2.12
(3H, s, CH3C@N), 1.01–0.91 (6H, m, CH(CH3)(CH3)). (ESI) m/z 536 (M+Na+,
100%). HRMS: calcd for C26H31O8N3Na 536.2003; found, 536.2004. More polar
oxime 15 isolated as a colourless oil (27 mg, 38%); 1H NMR (300 MHz, CDCl3): d
8.17 (1H, br s, NH), 8.08 (1H, br s, NH), 8.01 (2H, dd, J 9.0, 2.2 Hz, ArH), 7.50–
7.30 (5H, m, ArH), 7.21 (2H, d, J 8.3 Hz, ArH), 5.35–5.20 (1H, m, OH), 5.13 (2H, s,
CH2), 4.20–4.10 (1H, m, NHCHCH(CH3)2), 3.90 (3H, s, OCH3), 3.83 (3H, s, OCH3),
2.40–2.20 (1H, m, CH(CH3)(CH3)), 2.08 (3H, s, CH3C@N), 1.10–0.90 (6H, m,
CH(CH3)(CH3)). (ESI) m/z 552 (M+Na+, 85%). HRMS: calcd for C26H31O9N3Na
552.1958; found 552.1964.
References and notes
1. For recent reviews see: (a) Tohma, H.; Kita, Y. Adv. Synth. Catal. 2004, 346, 111–
124; (b) Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656–3665; (c) Wirth, T.
Angew. Chem., Int. Ed. 2001, 40, 2812–2814.
2. (a) Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019–8022; (b)
Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem. 1995, 60,
7272–7276.
3. (a) Thottumkara, A. P.; Vinod, T. K. Tetrahedron Lett. 2002, 43, 569–572; (b)
Kommreddy, A.; Bowsher, M. S.; Gunna, M. R.; Botha, K.; Vinod, T. K.
Tetrahedron Lett. 2008, 49, 4378–4382.
4. Sorg, G.; Mengel, A.; Jung, G.; Rademann, J. Angew. Chem., Int. Ed. 2001, 40,
4395–4397.
5. pIBX has been used to oxidise C-terminal peptide alcohols: Sorg, G. T. B.;
Mader, O.; Rademann, J.; Jung, G. J. Peptide Sci. 2005, 11, 142–152.
6. For recent examples of mechanistic studies see: (a) Dess, D. B.; Martin, J. C. J.
Am. Chem. Soc. 1991, 113, 7277–7287; (b) Nicolaou, K. C.; Mathison, C. J. N.;
Montagnon, T. Angew. Chem., Int. Ed. 2003, 42, 4077–4082; (c) Nicolaou, K. C.;
Baran, P. S.; Zhong, Y. L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am.
Chem. Soc. 2002, 124, 2233–2244; (d) Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L. J.
Am. Chem. Soc. 2001, 123, 3183–3185; (e) Nicolaou, K. C.; Montagnon, T.; Baran,
20. pIBX was purchased from Merck and was used as provided. A different batch of
pIBX, supplied with the same resin loading, showed less reactivity and hence
more equivalents of pIBX and longer reaction times were required for the
reaction to go to completion.
21. Mass spectroscopy data for 18 (ESI) m/z 522 (M+Na+, 23%). HRMS: calcd for
C25H29N3O8Na 522.1852, found 522.1854.
22. Kirsch, S. F. J. Org. Chem. 2005, 70, 10210–10212.