Organometallics 2009, 28, 3485–3491
3485
Cobaloximes with Bis(thiophenyl)glyoxime: Synthesis and
Structure-Property Relationship Study
Gargi Dutta, Kamlesh Kumar, and B. D. Gupta*
Department of Chemistry, Indian Institute of Technology, Kanpur, 208 016, India
ReceiVed January 28, 2009
Alkyl and non-alkyl cobaloximes with bis(thiophenyl)glyoxime, X/RCo(dSPhgH)2Py (X ) Cl, R )
Me, Et, Pr, Bu, Bn) have been synthesized and characterized for the first time. The X-ray structures of
the complexes ClCo(dSPhgH)2Py, EtCo(dSPhgH)2Py, and BuCo(dSPhgH)2Py are reported. The orientation
of SPh groups with respect to the dioxime plane varies with the steric bulk of the axial ligand and affects
1
the NMR chemical shifts. The cis and trans influence has been studied by H NMR, 13C NMR, and
X-ray diffraction. The steric cis influence of the equatorial thiodioxime affects the Co-C bond reactivity
in their cobaloxime complexes. The molecular oxygen insertion into the Co-C bond and steric cis influence
are related to each, and both follow the same order, dmestgH . dpgH > chgH > dSPhgH g dmgH >
gH. A cyclic voltammetry study shows that the reductions, Co(III)/Co(II) and Co(II)/Co(I), are easier in
ClCo(dSPhgH)2Py as compared to other chlorocobaloximes (gH, dmgH, dpgH, mestgH).
complexes with different chelates has been systematically
investigated.1,6-8 The influence of the equatorial ligands on the
axial ligands (cis influence) in Costa’s model and iminates
(cobalt complexes with a tetradentate Schiff base) has also been
reported.1b,c However the similar investigation in dioximates is
little studied since the majority of the reported complexes have
dmgH as the equatorial ligand. Our work on cobaloximes with
different dioximes has shown that the effect of dioxime on the
Co-C bond (cis influence) far exceeds the trans influence of
the axial base.9 In recent years, the description, spectroscopic
data, structure-property relationship, and their correlation to
Co-C bonds have been most emphasized.9a,10 The overall
evidence from literature strongly suggests that many of the
chemical properties related to the axial fragment such as
geometry, kinetics, and spectroscopic behavior are significantly
affected by a change in the equatorial ligand (cis effect and cis
influence).1e,f,6,8,9b,11 The dimesitylglyoxime (dmestgH) com-
plexes have the maximum cobalt anisotropy and the highest
steric cis influence among the commonly studied dioximes. The
overall cis influence follows the order dmestgH > dpgH > dmgH
> chgH > gH.9a Since the cis influence affects the Co-C bond
Introduction
Cobaloximes have been extensively studied and reviewed
over the past four decades.1 [Cobaloximes have the general
formula RCo(L)2B, where R is an organic group σ-bonded to
cobalt. B is an axial base trans to the organic group, and L is
a monoanionic dioxime ligand (e.g., glyoxime (gH), dimeth-
ylglyoxime (dmgH), 1,2-cyclohexanedione dioxime (chgH),
diphenylglyoxime (dpgH), dimesitylglyoxime (dmestgH), and
dithiophenylglyoxime (dSPhgH).] More than 1500 complexes
and >150 crystal structures have been reported. Since the Co-C
bond cleavage is the key step involved in B12-dependent
enzymatic or cobaloxime-mediated reactions,2-5 the strength
of the Co-C bond as a function of steric and electronic factors
with a wide range of axial ligands in cobaloximes and related
* Corresponding author. Tel: +91-512-2597046. Fax: +91-512-2597436.
E-mail: bdg@iitk.ac.in.
(1) (a) Bresciani-Pahor, N.; Forcolin, M.; Marzilli, L. G.; Randaccio,
L.; Summers, M. F.; Toscano, P. J. Coord. Chem. ReV. 1985, 63, 1, and
references therein. (b) Randaccio, L.; Bresciani-Pahor, N.; Zangrando, E.;
Marzilli, L. G. Chem. Soc. ReV. 1989, 18, 225. (c) Randaccio, L. Comments
Inorg. Chem. 1999, 21, 327. (d) Gupta, B. D.; Yamuna, R.; Singh, V.;
Tiwari, U. Organometallics 2003, 22, 226. (e) Gupta, B. D.; Qanungo, K.;
Barcley, T.; Cordes, W. J. Organomet. Chem. 1998, 560, 155. (f) Gupta,
B. D.; Qanungo, K.; Yamuna, R.; Pandey, A.; Tiwari, U.; Vijaikanth, V.;
Singh, V.; Barcley, T.; Cordes, W. J. Organomet. Chem. 2000, 608, 106.
(g) Gupta, B. D.; Roy, S. Inorg. Chim. Acta 1988, 146, 209. (h) Gupta,
B. D.; Mandal, D. Organometallics 2006, 25, 3305. (i) Gupta, B. D.; Roy,
S. Tetrahedron Lett. 1985, 26, 3609.
(2) Golding, B. T.; Kemp, T. J.; Sell, C. S.; Sellars, P. J.; Watson, W. P.
J. Chem. Soc., Perkin Trans. 2 1978, 839.
(3) (a) Samsel, E. G.; Kochi, J. K. J. Am. Chem. Soc. 1986, 108, 4790.
(b) Atkins, M. P.; Golding, B. T.; Sellers, P. J. J. Chem. Soc., Chem.
Commun. 1978, 108, 954.
(4) (a) Dodd, D.; Johnson, M. D.; Steeples, I. P.; McKenzie, E. D. J. Am.
Chem. Soc. 1976, 98, 6399. (b) Cooksey, C. J.; Dodd, D.; Johnson, M. D.;
Lockman, B. L. J. Chem. Soc., Dalton Trans. 1978, 1814. (c) McKenzie,
E. D. Inorg. Chim. Acta 1978, 29, 107.
(5) (a) Gupta, B. D.; Dixit, V.; Das, I. J. Organomet. Chem. 1999, 572,
49. (b) Gupta, B. D.; Kumar, M.; Roy, S. Inorg. Chem. 1989, 28, 11. (c)
Gupta, B. D.; Roy, S. Tetrahedron Lett. 1984, 3255. (d) Roy, S.; Das, I.;
Bhanuprakash, K.; Gupta, B. D. Tetrahedron 1994, 50, 1847. (e) Gupta,
B. D.; Kumar, M. Inorg. Chim. Acta 1988, 149, 223. (f) Gupta, B. D.; Das,
I.; Dixit, V. J. Chem. Res. 1992, 306. (g) Roy, M.; Kumar, M; Gupta, B. D.
Inorg. Chim. Acta 1986, 114, 87. (h) Gupta, B. D.; Vijaikanth, V. J.
Organomet. Chem. 2004, 689, 1102.
(6) (a) Yohannes, P. G.; Bresciani-Pahor, N.; Randaccio, L.; Zangrando,
E.; Marzilli, L. G. Inorg. Chem. 1988, 27, 4738. (b) Summers, M. F.;
Marzilli, L. G.; Bresciani-Pahor, N.; Randaccio, L. J. Am. Chem. Soc. 1984,
106, 4478.
(7) (a) Marzilli, L. G.; Gerli, A.; Calafat, A. M. Inorg. Chem. 1992, 31,
4617. (b) Hirota, S.; Polson, S. M.; Puckett, J. M., Jr.; Moore, S. J.; Mitchell,
M. B.; Marzilli, L. G. Inorg. Chem. 1996, 35, 5646. (c) Polson, S. M.;
Cini, R.; Pifferi, C.; Marzilli, L. G. Inorg. Chem. 1997, 36, 314.
(8) (a) Randaccio, L.; Furlan, M.; Geremia, S.; Slouf, M.; Srnova, I.;
Toffoli, D. Inorg. Chem. 2000, 39, 3403. (b) Randaccio, L.; Geremia, S.;
Nardin, G.; Slouf, M.; Srnova, I. Inorg. Chem. 1999, 38, 4087.
(9) (a) Mandal, D.; Gupta, B. D. Organometallics 2005, 24, 1501, and
references therein. (b) Gupta, B. D.; Qanungo, K. J. Organomet. Chem.
1997, 543, 125. (c) Gupta, B. D.; Vijaikanth, V.; Singh, V. J. Organomet.
Chem. 1998, 570, 1. (d) Gupta, B. D.; Roy, M.; Das, I. J. Organomet. Chem.
1990, 397, 219. (e) Gupta, B. D.; Tiwari, U.; Barcley, T.; Cordes, W. J.
Organomet. Chem. 2001, 629, 83. (f) Gupta, B. D.; Singh, V.; Yamuna, R.
Organometallics 2003, 22, 2670.
(10) (a) Mandal, D.; Gupta, B. D. Organometallics 2007, 26, 658. (b)
Xin, Z.; Han, D.; Li, Y.; Chen, H. Inorg. Chim. Acta 2006, 359, 1121. (c)
Drago, R. S. J. Organomet. Chem. 1996, 512, 61.
(11) Gilaberte, J. M.; Lopez, C.; Alvarez, S.; Font-Bardia, M.; Solans,
X. New J. Chem. 1993, 17, 193.
10.1021/om900065k CCC: $40.75
2009 American Chemical Society
Publication on Web 05/05/2009