Nano Letters
Letter
(4) Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das,
S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R.; Liang, L.; Louie, S.
G.; Ringe, E.; Zhou, W.; Kim, S. S.; Naik, R. R.; Sumpter, B. G.;
Terrones, H.; Xia, F.; Wang, Y.; Zhu, J.; Akinwande, D.; Alem, N.;
Schuller, J. A.; Schaak, R. E.; Terrones, M.; Robinson, J. A. Recent
advances in two-dimensional materials beyond graphene. ACS Nano
2015, 9, 11509−11539.
(5) Zhou, H.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang,
X.; Liu, Y.; Weiss, N. O.; Lin, Z.; Huang, Y.; Duan, X. Large area
growth and electrical properties of p-type WSe2 atomic layers. Nano
Lett. 2015, 15, 709−713.
(6) Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D
semiconductor transition metal dichalcogenides. Nat. Photonics 2016,
10, 216−226.
(7) Schaibley, J. R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler,
K. L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater.
2016, 1, 16055.
(8) Lee, C.-H.; Lee, G.-H.; van der Zande, A. M.; Chen, W.; Li, Y.;
Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F.; Guo, J.; Hone,
J.; Kim, P. Atomically thin p−n junctions with van der Waals
heterointerfaces. Nat. Nanotechnol. 2014, 9, 676−681.
(9) Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.;
Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Lateral
heterojunctions within monolayer MoSe2−WSe2 semiconductors.
Nat. Mater. 2014, 13, 1096−1101.
(10) Wu, W.; Wang, J.; Ercius, P.; Wright, N. C.; Leppert-
Simenauer, D. M.; Burke, R. A.; Dubey, M.; Dongare, A. M.; Pettes,
M. T. Giant mechano-optoelectronic effect in an atomically thin
semiconductor. Nano Lett. 2018, 18, 2351−2357.
(11) Chakraborty, C.; Kinnischtzke, L.; Goodfellow, K. M.; Beams,
R.; Vamivakas, A. N. Voltage-controlled quantum light from an
atomically thin semiconductor. Nat. Nanotechnol. 2015, 10, 507−511.
(12) Tonndorf, P.; Schmidt, R.; Schneider, R.; Kern, J.; Buscema,
M.; Steele, G. A.; Castellanos-Gomez, A.; van der Zant, H. S. J.;
Michaelis de Vasconcellos, S.; Bratschitsch, R. Single-photon emission
from localized excitons in an atomically thin semiconductor. Optica
2015, 2, 347−352.
direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14,
4592−4597.
(23) Dai, Z.; Liu, L.; Zhang, Z. Strain engineering of 2D materials:
Issues and opportunities at the interface. Adv. Mater. 2019, 1805417.
(24) He, K.; Poole, C.; Mak, K. F.; Shan, J. Experimental
demonstration of continuous electronic structure tuning via strain
in atomically thin MoS2. Nano Lett. 2013, 13, 2931−2936.
́
́
(25) Vuong, T. Q. P.; Liu, S.; Van der Lee, A.; Cusco, R.; Artus, L.;
Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B. Isotope
engineering of van der Waals interactions in hexagonal boron nitride.
Nat. Mater. 2017, 17, 152−158.
́
́
(26) Cusco, R.; Artus, L.; Edgar, J. H.; Liu, S.; Cassabois, G.; Gil, B.
Isotopic effects on phonon anharmonicity in layered van der Waals
crystals: Isotopically pure hexagonal boron nitride. Phys. Rev. B:
Condens. Matter Mater. Phys. 2018, 97, 155435.
̈
̈
(27) Volkening, J.; Koppe, M.; Heumann, K. G. Tungsten isotope
ratio determinations by negative thermal ionization mass spectrom-
etry. Int. J. Mass Spectrom. Ion Processes 1991, 107, 361−368.
(28) Wachsmann, M.; Heumann, K. G. Negative thermal ionization
mass spectroscopy of main group elements Part 2. 6th group: Sulfur,
selenium and tellurium. Int. J. Mass Spectrom. Ion Processes 1992, 114,
209−220.
(29) Klemens, P. G. The scattering of low-frequency lattice waves by
static imperfections. Proc. Phys. Soc., London, Sect. A 1955, 68, 1113−
1128.
(30) Tamura, S. Isotope scattering of dispersive phonons in Ge.
Phys. Rev. B: Condens. Matter Mater. Phys. 1983, 27, 858−866.
̈
(31) Schmidt, R.; Niehues, I.; Schneider, R.; Druppel, M.; Deilmann,
T.; Rohlfing, M.; Michaelis de Vasconcellos, S.; Castellanos-Gomez,
A.; Bratschitsch, R. Reversible uniaxial strain tuning in atomically thin
WSe2. 2D Mater. 2016, 3, 021011.
(32) Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X.; Zhou, W.; Yu,
T.; Qiu, C.; Birdwell, A. G.; Crowne, F. J.; Vajtai, R.; Yakobson, B. I.;
Xia, Z.; Dubey, M.; Ajayan, P. M.; Lou, J. Strain and structure
heterogeneity in MoS2 atomic layers grown by chemical vapour
deposition. Nat. Commun. 2014, 5, 5246.
(33) Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D.-H.; Mastandrea, J.
P.; Ager, J. W., III; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A.
Strain-engineered growth of two-dimensional materials. Nat.
Commun. 2017, 8, 608.
(13) Palacios-Berraquero, C.; Barbone, M.; Kara, D. M.; Chen, X.;
Goykhman, I.; Yoon, D.; Ott, A. K.; Beitner, J.; Watanabe, K.;
̈
Taniguchi, T.; Ferrari, A. C.; Atature, M. Atomically thin quantum
light-emitting diodes. Nat. Commun. 2016, 7, 12978.
(14) Branny, A.; Kumar, S.; Proux, R.; Gerardot, B. D. Deterministic
strain-induced arrays of quantum emitters in a two-dimensional
semiconductor. Nat. Commun. 2017, 8, 15053.
(15) Palacios-Berraquero, C.; Kara, D. M.; Montblanch, A. R. P.;
Barbone, M.; Latawiec, P.; Yoon, D.; Ott, A. K.; Loncar, M.; Ferrari,
̈
̈
(34) Tonndorf, P.; Schmidt, R.; Bottger, P.; Zhang, X.; Borner, J.;
Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T.;
Michaelis de Vasconcellos, S.; Bratschitsch, R. Photoluminescence
emission and Raman response of monolayer MoS2, MoSe2, and WSe2.
Opt. Express 2013, 21, 4908−4916.
(35) Dong, L.; Wang, J.; Namburu, R.; O’Regan, T. P.; Dubey, M.;
Dongare, A. M. Edge effects on band gap energy in bilayer 2H-MoS2
under uniaxial strain. J. Appl. Phys. 2015, 117, 244303.
(36) Pettes, M. T.; Ji, H. X.; Sadeghi, M. M.; Jo, I.; Wu, W.; Ruoff, R.
S.; Shi, L. Scattering of phonons by high-concentration isotopic
impurities in ultrathin graphite. Phys. Rev. B: Condens. Matter Mater.
Phys. 2015, 91, 035429.
A. C.; Atature, M. Large-scale quantum-emitter arrays in atomically
̈
thin semiconductors. Nat. Commun. 2017, 8, 15093.
(16) He, Y.-M.; Clark, G.; Schaibley, J. R.; He, Y.; Chen, M.-C.; Wei,
Y.-J.; Ding, X.; Zhang, Q.; Yao, W.; Xu, X.; Lu, C.-Y.; Pan, J.-W. Single
quantum emitters in monolayer semiconductors. Nat. Nanotechnol.
2015, 10, 497−502.
(17) Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G.
Quantum engineering of transistors based on 2D materials
heterostructures. Nat. Nanotechnol. 2018, 13, 183−191.
(18) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically
thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010,
105, 136805.
(19) Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-
H.; Eda, G. Evolution of electronic structure in atomically thin sheets
of WS2 and WSe2. ACS Nano 2013, 7, 791−797.
(20) Yazdani, S.; Pettes, M. T. Nanoscale self-assembly of
thermoelectric materials: A review of chemistry-based approaches.
Nanotechnology 2018, 29, 432001.
(37) Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley
& Sons: New York, 2005.
(38) Terrones, H.; Corro, E. D.; Feng, S.; Poumirol, J. M.; Rhodes,
D.; Smirnov, D.; Pradhan, N. R.; Lin, Z.; Nguyen, M. A. T.; Elías, A.
L.; Mallouk, T. E.; Balicas, L.; Pimenta, M. A.; Terrones, M. New first
order Raman-active modes in few layered transition metal
dichalcogenides. Sci. Rep. 2015, 4, 4215.
(39) Beechem, T.; Graham, S. Temperature and doping dependence
of phonon lifetimes and decay pathways in GaN. J. Appl. Phys. 2008,
103, 093507.
̈
(40) Hu, X.; Yasaei, P.; Jokisaari, J.; Ogut, S.; Salehi-Khojin, A.; Klie,
̈
R. F. Mapping thermal expansion coefficients in freestanding 2D
materials at the nanometer scale. Phys. Rev. Lett. 2018, 120, 055902.
(41) Murray, R.; Evans, B. The thermal expansion of 2H-MoS2 and
2H-WSe2 between 10 and 320 K. J. Appl. Crystallogr. 1979, 12, 312−
315.
(21) Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.;
Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained
monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626−3630.
(22) Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.;
Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to
1532
Nano Lett. 2019, 19, 1527−1533