M.-s. Kim, J. W. Lee, J. E. Lee, J. Kang
SHORT COMMUNICATION
Scheme 5. Preparation of bicyclic ruthenium tricarbonyl complexes 14 and 15.
be more susceptible to dissociation, which is required step
Conclusions
for the initiation of the catalytic cycle of the complex,[14]
even though the fluxional behavior of this kind of complex
in solution is expected.[15] As expected, both of the menthyl
rings in bicyclic cyclopentadienone–ruthenium tricarbonyl
complex 14 assume a chair conformation. The methine hy-
drogens on the connecting carbon atoms (C12 and C22) on
each menthyl ring lie almost in the same plane as the diene
We prepared various enantiopure bicyclic cyclopenta-
dienone–ruthenium carbonyl complexes with menthyl side
chains that reside on the opposite side of the cyclopenta-
dienone ring. The complexes were derived stereoselectively
from (–)-menthone in several steps.
Supporting Information (see footnote on the first page of this arti-
unit (–21.2 and –160.0°), which was expected. More import- cle): Experimental procedures.
antly, both of the two isopropyl groups on the menthyl rings
are pushed away from the ruthenium metal center, despite
the increased steric interaction of the menthyl ring with the
Acknowledgments
allylic hydrogens (Scheme 1, C; Figure 1),[16] which was
contrary to our initial expectation. It is also interesting that
This work was supported by the Special Research Grant of Sogang
the overall structure of bicyclic diruthenium ruthenacycle
complex 15 is similar to that of bicyclic cyclopentadienone–
ruthenium tricarbonyl complex 14 except for the fact that
the carbonyl group of complex 14 is replaced by one
Ru(CO)3 unit (Figure 2).[16]
University. Assistance in X-ray crystallography by Professor
Myoung Soo Lah at Hanyang University, Ansan, is appreciated.
[1] Review: M. Ogliaruso, M. G. Romanelli, E. I. Becker, Chem.
Rev. 1965, 65, 261–367.
[2] a) A. Gamba, R. Gandolfi, R. Oberti, N. Sardone, Tetrahedron
1993, 49, 6331–6348; b) T. Jikyo, M. Eto, K. Harano, Tetrahe-
dron 1999, 55, 6051–6066; c) J. D. Rainier, J. E. Imbriglio, Org.
Lett. 1999, 1, 2037–2039; d) A. J. Pearson, J. B. Kim, Tetrahe-
dron Lett. 2003, 44, 8525–8527.
[3] U. Kumer, T. X. Meenan, Macromolecules 1995, 28, 124–130.
[4] a) A. H. Hoveyda, J. P. Morken, Angew. Chem. Int. Ed. Engl.
1996, 35, 1262–1284; b) R. L. Halterman, Chem. Rev. 1992, 92,
965–994.
[5] Reviews on transition-metal-catalyzed cycloadditions: a) I.
Ojima, M. Tzamarioudaki, Z. Li, R. J. Donovan, Chem. Rev.
1996, 96, 635–662; b) H.-W. Frühauf, Chem. Rev. 1997, 97,
523–596.
[6] a) G. Mehta, J. D. Umarye, Org. Lett. 2002, 4, 1063–1066; b)
V. B. Birman, S. Danishefsky, J. Am. Chem. Soc. 2002, 124,
2080–2081; c) B. B. Snider, N. A. Hawryluk, Org. Lett. 2001,
3, 569–572.
Figure 1. X-ray crystal structure of chiral bicyclic cyclopenta-
dienone–ruthenium Complex 14; hydrogen atoms have been omit-
ted for clarity.
[7] a) A. C. Filippou, T. Rosenauer, Angew. Chem. Int. Ed. 2002,
41, 2393–2396; b) A. J. Pearson, J. B. Kim, Org. Lett. 2002, 4,
2837–2840; c) A. J. Pearson, A. Perosa, Organometallics 1995,
14, 5178–5183; d) H.-J. Knölker, E. Baum, J. Heber, Tetrahe-
dron Lett. 1995, 36, 7647–7650.
[8] a) Y. Yamamoto, Y. Miyabe, K. Itoh, Eur. J. Inorg. Chem. 2004,
3651–3661; b) M. I. Bruce, J. R. Knight, J. Organomet. Chem.
1968, 12, 411–413.
[9] a) F. F. Huerta, A. B. E. Minidis, J.-E. Bäckvall, Chem. Soc.
Rev. 2001, 30, 321–331; b) M.-J. Kim, Y. Ahn, J. Park, Bull.
Korean Chem. Soc. 2005, 26, 515–522.
[10] C. Spino, C. Beaulieu, J. Lafrenière, J. Org. Chem. 2000, 65,
7091–7097.
Figure 2. X-ray crystal structure of chiral bicyclic diruthenium
ruthenacycle complex 15; hydrogen atoms have been omitted for
clarity.
[11] a) G. Cetini, O. Gambino, E. Sappa, M. Valle, J. Organomet.
Chem. 1969, 17, 437–443; b) Y. Blum, Y. Shvo, Isr. J. Chem.
1984, 24, 144–148.
2512
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 2510–2513