Article
Inorganic Chemistry, Vol. 48, No. 12, 2009 5251
solid state structures and plays a key role in their luminescent
properties.12-22 Furthermore, the potentially bridging char-
acter of the alkynyl ligands, either through the electron
density of the CtC units or by using internal or terminal
polypyridyl-functionalized alkynyl entities, makes them ideal
groups for design multicomponent or heterometallic com-
plexes that usually exhibit more efficient long-lived and often
dual photoluminescence with wider ranges of colors.15,23-30
Within this field, although considerable work has been
carried out on alkynyl compounds in relation with d10 (group
11 and HgII) metals,7,12,15,21,22,25-39 relatively few studies
have explored the chemistry of homo40-43 and heteropoly-
nuclear d10-cadmium(II) alkynyl systems44-47 and little is
known about their photophysical behavior.44-47 In view of
this fact and given the recent interest in complexes contain-
ing unusual PtIIfCdII donor-acceptor bonds,45,46,48-51 we
have been involved in examining the reactivity of anio-
nic alkynyl platinates toward CdII salts, with the aim of
synthesizing photoluminescent heteropolynuclear complexes
stabilized by either η2 Cd alkynyl and/or Pt-Cd bond-
3 3 3
3 3 3
ing interactions.44-47 We have found that the degree of
interaction of CdII with the alkynyl entities and the basic
platinum center seems to be modulated by the number and
nature of the ligands around the divalent CdII.
Thus, the first documented CdII alkynyl complexation was
reported in the tetranuclear sandwich-type anionic cluster
[{Pt(CtCPh)4}2(CdCl)2]2- (A, Chart 1), stabilized by eight
μ-κCR-alkynyl and four short Pt Cd bonding interactions.
3 3 3
This cluster (A) containing cationic “CdCl+” units was
generated, together with the 1:2 adduct [{Pt(CtCPh)4}
(CdCl2)2]2- (B, Chart 1) having neutral CdCl2 entities
and μ-η2-alkynyl Cd interactions, by reaction of [Pt-
3 3 3
(CtCPh)4]2- with CdCl2 (1:2 molar ratio).44 Furthermore,
the mixed platinates [cis-Pt(C6F5)2(CtCR)2]2- are able to
stabilize, through η2 alkyne interactions, not only the neutral
CdCl2 unit (C, Chart 1), but also a naked CdII (D, Chart 1),
the latter by reaction with Cd(NO3)2 regardless of the molar
ratio used.47 Curiously, if the reaction takes place in the
presence of cyclen (1,4,7,10-tetraazacyclodecane) the plati-
num center effectively competes with the alkynyl ligands,
affording an unusual bimetallic derivative (E, Chart 1) con-
taining a very short Pt-Cd bond (2.764(1) A) and retaining
only a weak interaction with one of the alkynyl fragments.46
These results prompted us to investigate the coordination of
the alkynyl platinates cis- and trans-[Pt(C6F5)2(CtCR)2]2-
(R = Ph, Tol) toward CdII in the presence of stronger
chelating polyimine ligands such as 2,20-bipyridine (bpy),
5,50-dimethyl-2,20-bipyridine (dmbpy), 1,10-phenanthroline
(phen), and 2,20,60,200-terpyridine (trpy). We note that these
ligands have been widely used for the synthesis of coordina-
tioncomplexes,52-54 and also supramolecular structures,55-57
with interesting photoluminescence properties.6
(22) Lagunas, M. C.; Fierro, C. M.; Pintado-Alba, A.; de la Riva, H.;
Betanzos-Lara, S. Gold Bull. 2007, 40, 135.
(23) Chen, Z.-N.; Fan, Y.; Ni, J. Dalton Trans. 2008, 573, and references
therein.
(24) Ziessel, R.; Seneclauze, J. B.; Ventura, B.; Barbieri, A.; Barigelletti,
F. Dalton Trans. 2008, 1686, and references therein.
ꢀ
ꢀ
(25) Gil, B.; Fornies, J.; Gomez, J.; Lalinde, E.; Martı
´
n, A.; Moreno, M.
T. Inorg. Chem. 2006, 45, 7788.
ꢀ
(26) Fornies, J.; Fuertes, S.; Martı
´
n, A.; Sicilia, V.; Lalinde, E.; Moreno,
M. T. Chem.;Eur. J. 2006, 12, 8253.
ꢀ
(27) Berenguer, J. R.; Fornies, J.; Gil, B.; Lalinde, E. Chem.;Eur. J.
2006, 12, 785.
ꢀ
ꢀ
ꢀ
(28) Ara, I.; Berenguer, J. R.; Eguizabal, E.; Fornies, J.; Gomez, J.;
Lalinde, E. J. Organomet. Chem. 2003, 670, 221.
ꢀ
ꢀ
(29) Charmant, J. P. H.; Fornies, J.; Gomez, J.; Lalinde, E.; Merino, R. I.;
Moreno, M. T.; Orpen, A. G. Organometallics 2003, 22, 652.
ꢀ
ꢀ
(30) Charmant, J. P. H.; Fornies, J.; Gomez, J.; Lalinde, E.; Merino, R. I.;
Moreno, M. T.; Orpen, A. G. Organometallics 1999, 18, 3353.
(31) Wong, W.-Y. Coord. Chem. Rev. 2007, 251, 2400.
(32) Chui, S. S. Y.; Ng, M. F. Y.; Che, C.-M. Chem.;Eur. J. 2005, 11,
1739.
In this paper we describe the synthesis, characterization,
and photophysical properties of a family of unusual bime-
tallic complexes [cis-Pt(C6F5)2(CtCR)2Cd(N-N)2] (R = Ph,
Tol; N-N = bpy, dmbpy, phen), [cis-Pt(C6F5)2(CtCR)2Cd-
(trpy)] (R = Ph, Tol) and [trans-Pt(C6F5)2(CtCR)2Cd-
(bpy)2].
(33) Yam, V. W.-W.; Lo, K. K.-W.; Wong, K. M.-C. J. Organomet.
Chem. 1999, 578, 3.
(34) Yam, V. W.-W.; Lo, K. K. W.; Fung, W. K.-M.; Wang, C. R. Coord.
Chem. Rev. 1998, 171, 17.
(35) Ferrer, M.; Mounir, M.; Rodrı
´
guez, L.; Rossell, O.; Coco, S.;
ꢀ
Gomez-Sal, P.; Martı
´
n, A. J. Organomet. Chem. 2005, 690, 2200.
(36) Lin, Y.-Y.; Lai, S.-W.; Che, C.-M.; Cheung, K.-K.; Zhou, Z.-Y.
Organometallics 2002, 21, 2275.
(37) Chao, H.-Y.; Lu, W.; Li, Y.; Chan, M. C. W.; Che, C.-M.; Cheung,
K. K.; Zhu, N. J. Am. Chem. Soc. 2002, 124, 14696.
Experimental Section
Materials. Complete details concerning the synthesis and
spectroscopic characterization of the complexes 1- 6 are pro-
vided as Supporting Information. All reactions and manipula-
tions were carried out under argon atmosphere using distilled
solvents, purified by known procedures. (PMePh3)2[cis-Pt-
(C6F5)2(CtCR)2] (R = Ph,58 Tol47) and (NBu4)2[trans-Pt-
(C6F5)2(CtCPh)2]59 were prepared according to literature
(38) Higgs, T. C.; Parsons, S.; Bailey, P. J.; Jones, A. C.; McLachlan, F.;
Parkin, A.; Dawson, A.; Tasker, P. A. Organometallics 2002, 21, 5692.
(39) Liao, Y.; Feng, J.-K.; Yang, L.; Ren, A.-M.; Zhang, H.-X. Organo-
metallics 2005, 24, 385.
(40) Nast, R.; Richers, C. Z. Anorg. Allg. Chem. 1963, 319, 320.
(41) Jeffery, E. A.; Mole, T. J. Organomet. Chem. 1968, 11, 393.
(42) Barr, D.; Edwards, A. J.; Raithby, P. R.; Rennie, M.-A.; Verhor-
evoort, K.; Wright, D. S. J. Chem. Soc., Chem. Commun. 1994, 1627.
::
(43) Harms, K.; Merle, J.; Maichle-Mossmer, C.; Massa, W.; Krieger, M.
Inorg. Chem. 1998, 37, 1099.
(44) Charmant, J. P. H.; Falvello, L. R.; Fornies, J.; Gomez, J.; Lalinde,
ꢀ
ꢀ
(52) Balzani, V.; Scandola, F. Supramolecular Photochemistry; Wiley:
Chichester, 1993.
(53) Kalyanasundaran, K. Photochemistry of Polypyridine and Polyphyrin
E.; Moreno, M. T.; Orpen, A. G.; Rueda, A. Chem. Commun. 1999, 2045.
ꢀ
ꢀ
(45) Fornies, J.; Gomez, J.; Lalinde, E.; Moreno, M. T. Inorg. Chem.
2001, 40, 5415.
Complexes; Academic Press: London, 1992.
ꢀ
ꢀ~
ꢀ
(46) Fornies, J.; Ibanez, S.; Martı
´
n, A.; Gil, B.; Lalinde, E.; Moreno, M.
(54) Horvath, O.; Stevenson, K. L. Charge Transfer Photochemistry of
T. Organometallics 2004, 23, 3963.
Coordination Compounds; VCH: New York, 1993.
(55) Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives;
ꢀ
ꢀ
ꢀ
(47) Fernandez, J.; Fornies, J.; Gil, B.; Gomez, J.; Lalinde, E.; Moreno,
M. T. Organometallics 2006, 25, 2274.
VCH: Weinheim, 1995.
(48) Yamaguchi, T.; Yamazaki, F.; Ito, T. J. Am. Chem. Soc. 1999, 121,
7405.
(56) Chen, W.-T.; Wang, M.-S.; Liu, X.; Guo, G.-C.; Huang, J.-S. Cryst.
Growth. Des. 2006, 6, 2289, and references therein.
(49) Li, Z.; Zheng, W.; Liu, H.; Mok, K. F.; Hor, T. S. A. Inorg. Chem.
(57) Shi, X.; Zhu, G.; Wang, X.; Li, G.; Fang, Q.; Zhao, X.; Wu, G.; Tian,
2003, 42, 8481.
G.; Xue, M.; Wang, R.; Qiu, S. Cryst. Growth Des. 2005, 5, 341.
ꢀ
ꢀ
´
nez, F.; Sotes, M.; Lalinde, E.; Moreno,
(50) Chen, W.; Liu, F.; Nishioka, T.; Matsumoto, K. Eur. J. Inorg. Chem.
2003, 4234.
(58) Espinet, P.; Fornies, J.; Martı
M. T.; Ruız, A.; Welch, A. J. J. Organomet. Chem. 1991, 403, 253.
´
ꢀ
(51) Femoni, C.; Kaswalder, F.; Iapalucci, M. C.; Longoni, G.; Zachini,
(59) Ara, I.; Berenguer, J. R.; Fornies, J.; Lalinde, E.; Moreno, M. T.
S. Chem. Commun. 2006, 2135.
Organometallics 1996, 15, 1820.