Journal of the American Chemical Society
Article
Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609−631. For
enantioselective Cu−B additions to/protonation of alkenes (proto-
boryl additions) and related compounds catalyzed by chiral Cu-based
complexes, see: (c) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009,
131, 3160−3161. (d) Lee, Y.; Jang, H.; Hoveyda, A. H. J. Am. Chem.
borosilane reagents in organic chemistry, see: Oestreich, M.;
Hartmann, E.; Mewald, M. Chem. Rev. 2013, 113, 402−441.
(9) For synthesis of enantiomerically enriched allylsilanes by various
catalytic protocols, see Cross-coupling: (a) Hayashi, T.; Konishi, M.;
Ito, H.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 4962−4963.
(b) Hayashi, T.; Konishi, M.; Okamoto, Y.; Kabeta, K.; Kumada, M. J.
Org. Chem. 1986, 51, 3772−3781. Hydrosilylation: (c) Hayashi, T.;
Kabeta, K.; Yamamoto, T.; Tamao, K.; Kumada, M. Tetrahedron Lett.
1983, 24, 5661−5664. (d) Hayashi, T.; Han, J. W.; Takeda, A.; Tang,
J.; Nohmi, K.; Mukaide, K.; Tsuji, H.; Uozumi, Y. Adv. Synth. Catal.
2001, 343, 279−283. Allylic substitution, see: (e) Hayashi, T.; Ohno,
A.; Lu, S.-j.; Matsumoto, Y.; Fukuyo, E.; Yanagi, K. J. Am. Chem. Soc.
1994, 116, 4221−4226. (f) Kacprzynski, M. A.; May, T. L.; Kazane, S.
A.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 4554−4558.
(g) Takeda, M.; Shintani, R.; Hayashi, T. J. Org. Chem. 2013, 78,
5007−5017. (h) Delvos, L. B.; Vyas, D. J.; Oestreich, M. Angew. Chem.,
Int. Ed. 2013, 52, 4650−4653. Reduction of silyl-substituted allyl
carbonates: (i) Hayashi, T.; Iwamura, H.; Uozumi, Y. Tetrahedron Lett.
1994, 35, 4813−4816. Si−B addition to allenes: (j) Ohmura, T.;
Taniguchi, H.; Suginome, M. J. Am. Chem. Soc. 2006, 128, 13682−
13683. Olefin metathesis: (k) Kiely, A. F.; Jernelius, J. A.; Schrock, R.
R.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 2868−2869. (l) Adam,
J.-M.; de Fays, L.; Laguerre, M.; Ghosez, L. Tetrahedron 2004, 60,
7325−7344.
́
Soc. 2009, 131, 18234−18235. (e) Corberan, R.; Mszar, N. W.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2011, 50, 7079−7082.
(f) Meng, F.; Jang, H.; Hoveyda, A. H. Chem. - Eur. J. 2013, 19,
3204−3214. (g) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Am.
Chem. Soc. 2013, 135, 4934−4937. (h) Jang, H.; Jung, B.; Hoveyda, A.
H. Org. Lett. 2014, 16, 4658−4661.
(2) For enantioselective diboron additions to alkenes catalyzed by Pd
or Pt complexes, see: (a) Pelz, N. F.; Woodward, A. R.; Burks, H. E.;
Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328−16329.
(b) Burks, H. E.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. 2009,
131, 9134−9135. (c) Kliman, L. T.; Mlynarski, S. N.; Morken, J. P. J.
Am. Chem. Soc. 2009, 131, 13210−13211. (d) Schuster, C. H.; Li, B.;
Morken, J. P. Angew. Chem., Int. Ed. 2011, 50, 7906−7909. (e) Kliman,
L. T.; Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. Angew. Chem., Int.
Ed. 2012, 51, 521−524. For an overview, see: (f) Takaya, J.; Iwasawa,
N. ACS Catal. 2012, 2, 1993−2006.
(3) For BCA reactions catalyzed by transition-metal complexes and
involving cyclic substrates to produce tertiary B-substituted carbon
stereogenic centers, see: Feng, X.; Yun, J. Chem. Commun. 2009,
6577−6579.
(10) For enantioselective silyl conjugate additions catalyzed by Pd or
Rh complexes, see: (a) Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am.
Chem. Soc. 1988, 110, 5579−5581. (b) Matsumoto, Y.; Hayashi, T.
Tetrahedron 1994, 50, 335−346. (c) Walter, C.; Auer, G.; Oestreich,
M. Angew. Chem., Int. Ed. 2006, 45, 5675−5677. (d) Walter, C.;
Oestreich, M. Angew. Chem., Int. Ed. 2008, 47, 3818−3820. (e) Walter,
(4) For BCA transformations promoted by transition-metal-based
complexes and involving acyclic substrates to form quaternary B-
substituted carbons stereogenic centers, see: (a) O’Brien, J. M.; Lee,
K.-s.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10630−10633.
(b) Chen, I.-H.; Kanai, M.; Shibasaki, M. Org. Lett. 2010, 12, 4098−
4101. (c) Feng, X.; Yun, J. Chem. - Eur. J. 2010, 16, 13609−13612.
(5) For BCA reactions facilitated by transition-metal complexes and
involving cyclic substrates to generate quaternary B-substituted
carbons stereogenic centers, see: Chen, I.-H.; Yin, L.; Itano, W.;
Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 11664−11665.
(6) For allylic substitution reactions that generate tertiary or
quaternary B-substituted stereogenic centers and are promoted by
Cu-based complexes, see: (a) Ito, H.; Ito, S.; Sasaki, Y.; Matsuura, K.;
Sawamura, M. J. Am. Chem. Soc. 2007, 129, 14856−14857.
(b) Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010,
132, 10634−10637. (c) Ito, H.; Okura, T.; Matsuura, K.; Sawamura,
M. Angew. Chem., Int. Ed. 2010, 49, 560−563. (d) Ito, H.; Kunii, S.;
Sawamura, M. Nat. Chem. 2010, 2, 972−976. (e) Park, J. K.; Lackey,
H. H.; Ondrusek, B. A.; McQuade, D. T. J. Am. Chem. Soc. 2011, 133,
2410−2413. (f) Park, J. K.; McQuade, D. T. Angew. Chem., Int. Ed.
2012, 51, 2717−2721.
(7) For catalytic diastereo- or enantioselective diboron additions to
imines, see: (a) Beenen, M.; An, C.; Ellman, J. A. J. Am. Chem. Soc.
2008, 130, 6910−6911. (b) Zhang, S.-S.; Zhao, Y.-S.; Tian, P.; Lin, G.-
Q. Synlett 2013, 24, 437−442. (c) Hong, K.; Morken, J. P. J. Am.
Chem. Soc. 2013, 135, 9252−9254. For related Si−B additions to
imines, see: (d) Zhao, C.; Jiang, C.; Wang, J.; Wu, C.; Zhang, Q.-W.;
He, W. Asian J. Org. Chem. 2014, 3, 851−855. (e) Hensel, A.; Nagura,
K.; Delvos, L. B.; Oestreich, M. Angew. Chem., Int. Ed. 2014, 53, 4964−
4967. (f) Mita, T.; Sugawara, M.; Saito, K.; Sato, Y. Org. Lett. 2014, 16,
3028−3031.
C.; Frohlich, R.; Oestreich, M. Tetrahedron 2009, 65, 5513−5520.
̈
(f) Hartmann, E.; Oestreich, M. Angew. Chem., Int. Ed. 2010, 49,
6195−6198. (g) Hartmann, E.; Oestreich, M. Org. Lett. 2012, 14,
2406−2409.
(11) For BCA reactions promoted by Cu complexes and involving
acyclic substrates to produce tertiary B-substituted stereogenic carbon
centers, see: (a) Lee, J.-E.; Yun, J. Angew. Chem., Int. Ed. 2008, 47,
145−147. (b) Sim, H.-S.; Feng, X.; Yun, J. Chem. - Eur. J. 2009, 15,
1939−1943. (c) Lillo, V.; Prieto, A.; Bonet, A.; Requejo, M. M. D.;
́ ́
Ramírez, J.; Perez, P. J.; Fernandez, E. Organometallics 2009, 28, 659−
662. (d) Weil, D. H.; Abboud, K. A.; Hong, S. Chem. Commun. 2010,
46, 7525−7527. (e) Park, J. K.; Lackey, H. H.; Rexford, M. D.; Kovnir,
K.; Shatruk, M.; McQuade, D. T. Org. Lett. 2010, 12, 5008−5011.
(f) Moure, A. L.; Arrayas
47, 6701−6703. (g) Sole,
́
, R. G.; Carretero, J. C. Chem. Commun. 2011,
C.; Whiting, A.; Gulyas, H.; Fernandez, E.
́
́
́
Adv. Synth. Catal. 2011, 353, 376−384. (h) Lee, J. C. H.; McDonald,
R.; Hall, D. G. Nat. Chem. 2011, 3, 894−899. (i) Takatsu, K.; Shintani,
R.; Hayashi, T. Angew. Chem., Int. Ed. 2011, 50, 5548−5552. (j) Sole,
C.; Bonet, A.; de Vries, A. H. M.; de Vries, J. G.; Lefort, L.; Gulyas
́
, H.;
Fernan
́
dez, E. Organometallics 2012, 31, 7855−7861. (k) Kobayashi,
S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T. Angew. Chem., Int. Ed.
2012, 51, 12763−12766. (l) Calow, A. D. J.; Batsanov, A. S.; Pujol, A.;
Sole, C.; Fernandez, E.; Whiting, A. Org. Lett. 2013, 15, 4810−4813.
́ ́
(m) Zhao, L.; Ma, Y.; He, F.; Duan, W.; Chen, J.; Song, C. J. Org.
Chem. 2013, 78, 1677−1681. (n) Luo, Y.; Roy, I. D.; Madec, A. G. E.;
Lam, H. W. Angew. Chem., Int. Ed. 2014, 53, 4186−4190.
(o) Kitanosono, T.; Xu, P.; Kobayashi, S. Chem. - Asian J. 2014, 9,
179−188.
(8) For reviews regarding the use of organosilicon species in organic
synthesis, see: (a) Chan, T. H.; Wang, D. Chem. Rev. 1992, 92, 995−
1006. (b) Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599−7662.
(c) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063−
2192. (d) Suginome, M.; Ito, Y. Chem. Rev. 2000, 100, 3221−3256.
For reviews on the utility of allylsilanes in organic synthesis, see:
(c) Masse, C. E.; Panek, J. S. Chem. Rev. 1995, 95, 1293−1316.
(d) Barbero, A.; Pulido, F. J. Acc. Chem. Res. 2004, 37, 817−825.
(e) Chabaud, L.; James, P.; Landais, Y. Eur. J. Org. Chem. 2004, 2004,
3173−3199. For a review on the utility of β-silylcarbonyls in synthesis,
see: (f) Fleming, I. Science of Synthesis; Thieme: Stuttgart, Germany,
2002; Vol. 4; pp 927−946. (g) For a review on the utility of
(12) For BCA reactions promoted by Ni, Pd, or Rh complexes, see:
́
(a) Lillo, V.; Geier, M. J.; Westcott, S. A.; Fernandez, E. Org. Biomol.
Chem. 2009, 7, 4674−4676. (b) Shiomi, T.; Adachi, T.; Toribatake, K.;
Zhou, L.; Nishiyama, H. Chem. Commun. 2009, 5987−5989.
(13) For NHC−Cu-catalyzed enantioselective SCA reactions, see:
(a) Lee, K.-s.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 2898−
́
2900. (b) Ibrahem, I.; Santoro, S.; Himo, F.; Cordova, A. Adv. Synth.
Catal. 2011, 353, 245−252. (c) Lee, K.-s.; Wu, H.; Haeffner, F.;
Hoveyda, A. H. Organometallics 2012, 31, 7823−7826. (d) Pace, V.;
Rae, J. P.; Harb, H. Y.; Procter, D. J. Chem. Commun. 2013, 49, 5150−
5152. (e) Plotzitzka, J.; Kleeberg, C. Organometallics 2014, 33, 6915−
P
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX