pubs.acs.org/joc
Platinum and Ruthenium Chloride-Catalyzed Cycloisomerization of
1-Alkyl-2-ethynylbenzenes: Interception of π-Activated Alkynes with a
Benzylic C-H Bond
Mamoru Tobisu,‡ Hiromi Nakai,† and Naoto Chatani*,†
†Department of Applied Chemistry, Faculty of Engineering and ‡Frontier Research Base for Global Young
Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Received May 24, 2009
Air-stable and commercially available alkynophilic metal salts, such as PtCl2, PtCl4, and [RuCl2(CO)3]2,
catalyze the cycloisomerization of 1-alkyl-2-ethynylbenzenes to produce substituted indenes even at
an ambient temperature. Electrophilically activated alkynes can be intercepted by simple benzylic
C-H bonds at primary, secondary, and tertiary carbon centers. Mechanistic studies, such as labeling
studies and kinetic isotope and substituent effects, indicate that the cycloisomerization proceeds
through the formation of a vinylidene intermediate and turnover-limiting 1,5-shift of benzylic
hydrogen.
Introduction
especially gold and platinum, is a rapidly evolving area of
research.1 To date, this alkyne activation strategy has been
applied to a diverse range of transformations, the mechanism
of which can be well-rationalized, in most cases, on the basis
of two limited resonance structures resulting from π-alkyne
complex I (Scheme 1). One form is a vinyl cation species II,
which is susceptible to nucleophilic attack by lone-pair
electrons of heteroatoms and π-electrons of arenes.1,2 The
other form is a carbene-carbenoid species III, which can be
intercepted by unsaturated bonds via cyclopropanation.1,3
Apart from these typical reaction modes via II and III,
involvement of a vinylidene intermediate IV has also been
suggested in several Pt- and Au-catalyzed reactions,4 as is
frequently proposed for other metals.5 Regardless of the
intermediate involved, the electrophilically activated alkyne
moiety is trapped, in most cases, by electron-rich function-
alities, including heteroatoms, stabilized carbanions, and
unsaturated bonds. A few notable exceptions exist, however,
The development of new catalytic reactions triggered by
π-activation of alkynes using electrophilic metal salts,
€
(1) For selected recent reviews: (a) Furstner, A.; Davies, P. W. Angew.
Chem., Int. Ed. 2007, 46, 3410. (b) Gorin, D. J.; Toste, F. D. Nature 2007, 446,
395. (c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (d) Arcadi, A. Chem.
ꢀ
ꢀ~
Rev. 2008, 108, 3266. (e) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev.
2008, 108, 3326. (f) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239.
(g) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351.
(h) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (i) Shen, H. C.
Tetrahedron 2008, 64, 3885. (j) Skouta, R.; Li, C.-J. Tetrahedron 2008, 64,
4917. (k) Kirsch, S. F. Synthesis 2008, 3183. (l) Lee, S. I.; Chatani, N. Chem.
Commun. 2009, 371.
(2) Selected reviews on catalytic hydroarylation of alkynes: (a) Nevado,
C.; Echavarren, A. M. Synthesis 2005, 167. (b) Kitamura, T. Eur. J. Org.
Chem. 2009, 1111. (c) Chatani, N.; Inoue, H.; Ikeda, T.; Murai, S. J. Org.
Chem. 2000, 65, 4913. (d) Inoue, H.; Chatani, N.; Murai, S. J. Org. Chem.
2002, 67, 1414.
(3) Interception of metal carbenoid species via double cyclopropanation:
(a) Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am.
ꢀ
Chem. Soc. 1998, 120, 9104. (b) Mendez, M.; Munoz, M. P.; Nevado, C.;
Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511.
~
ꢀ
ꢁ
(c) Mainetti, E.; Mouries, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles,
J. Angew. Chem., Int. Ed. 2002, 41, 2132. (d) Nieto-Oberhuber, C.; Munoz,
~
€
(4) (a) Mamane, V.; Hannen, P.; Furstner, A. Chem.;Eur. J. 2004, 10,
ꢀ
ꢀ
M. P.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew.
Chem., Int. Ed. 2004, 43, 2402. (e) Peppers, B. P.; Diver, S. T. J. Am. Chem. Soc.
4556. (b) Soriano, E.; Marco-Contelles, J. Organometallics 2006, 25, 4542.
(c) Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050.
(d) Bajracharya, G. B.; Pahadi, N. K.; Gridnev, I. D.; Yamamoto, Y. J.
Org. Chem. 2006, 71, 6204. (e) Seregin, I. V.; W., S. A.; Gevorgyan, V.
Tetrahedron 2008, 64, 6876.
~
2004, 126, 9524. (f) Nieto-Oberhuber, C.; Munoz, M. P.; Lopez, S.;
Jimenez-Nunez, E.; Nevado, C.; Herrero-Gomez, E.; Raducan, M.;
ꢀ
ꢀ
ꢀ~
ꢀ
Echavarren, A. M. Chem.;Eur. J. 2006, 11, 1677. (g) Marco-Contelles, J.;
ꢁ
Arroyo, N.; Anjum, S.; Mainetti, E.; Marion, N.; Cariou, K.; Lemiere, G.;
Mouries, V.; Fensterbank, L.; Malacria, M. Eur. J. Org. Chem. 2006, 4618.
(5) For recent reviews on catalytic reactions involving vinylidene inter-
mediates, see: (a) Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2006,
ꢁ
ꢀ
ꢀ
ꢀ
(h) Lopez, S.; Herrero-Gomez, E.; Perez-Galan, P.; Nieto-Oberhuber, C.;
Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 6029. (i) Kim, S. M.; Park,
J. H.; Choi, S. Y.; Chung, Y. K. Angew. Chem., Int. Ed. 2007, 46, 6172.
45, 2176. (b) Verela, J.; Saa, C. Chem.;Eur. J. 2006, 12, 6450. (c) Ohe, K.
Bull. Korean Chem. Soc. 2007, 28, 2153. (d) Trost, B. M.; McClory, A. Chem.
Asian J. 2008, 3, 164. (e) Liu, R.-S. Synlett 2008, 801.
DOI: 10.1021/jo901045g
r
Published on Web 06/18/2009
J. Org. Chem. 2009, 74, 5471–5475 5471
2009 American Chemical Society