J. J. Dong et al. / Tetrahedron Letters 50 (2009) 2778–2781
2781
Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71,
467–473; (c) Smet, M.; Van Dijk, J.; Dehaen, W. Synlett 1999, 495–497; (d)
Battace, A.; Lemhadri, M.; Zair, T.; Doucet, H.; Santelli, M. Adv. Synth. Catal.
2007, 349, 2507–2516; (e) Derridj, F.; Djebbar, S.; Benali-Baitich, O.; Doucet, H.
J. Organomet. Chem. 2008, 693, 135–144; (f) Pozgan, F.; Roger, J.; Doucet, H.
ChemSusChem 2008, 1, 404–407; (g) Derridj, F.; Roger, J.; Djebbar, S.; Geneste,
F.; Doucet, H. J. Organomet. Chem. 2009, 694, 455–465; (h) Roger, J.; Pozgan, F.;
Doucet, H. Green. Chem. 2009, 11, 425–432.
Acknowledgements
J.R. is grateful to MEN for a grant. We thank the Centre National
de la Recherche Scientifique and ‘Rennes Metropole’ for providing
financial support.
References and notes
11. (a) Burwood, M.; Davies, B.; Diaz, I.; Grigg, R.; Molina, P.; Sridharan, V.; Hughes,
M. Tetrahedron Lett. 1995, 36, 9053–9056; (b) Beccalli, E. M.; Broggini, G.;
Martinelli, M.; Paladino, G.; Zoni, C. Eur. J. Org. Chem. 2005, 2091–2096; (c)
Joucla, L.; Putey, A.; Joseph, B. Tetrahedron Lett. 2005, 46, 8177–8179; (d)
Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128,
581–590; (e) Putey, A.; Joucla, L.; Picot, L.; Besson, T.; Joseph, B. Tetrahedron
2007, 63, 867–879; (f) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola,
S. Synthesis 2008, 136–140.
12. (a) Lavenot, L.; Gozzi, C.; Ilg, K.; Orlova, I.; Penalva, V.; Lemaire, M. J. Organomet.
Chem. 1998, 567, 49–55; (b) Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J.
Am. Chem. Soc. 2002, 124, 5286–5287.
13. Nakano, M.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008, 10, 1851–1854.
14. (a) Gottumukkala, A. L.; Doucet, H. Adv. Synth. Catal. 2008, 350, 2183–2188; (b)
Fall, Y.; Doucet, H.; Santelli, M. ChemSusChem. 2009, 2, 153–157.
1. Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Pergamon:
Amsterdam, 2000.
2. (a) Sosabowski, M.; Powell, P. J. Chem. Res., Synop. 1995, 402–403; (b) Lee, B. S.;
Lee, J. H.; Chi, D. Y. J. Org. Chem. 2002, 67, 7884–7886; (c) Derdau, V.;
Oekonomopulos, R.; Schubert, G. J. Org. Chem. 2003, 68, 5168–5173; (d) Su, W.;
Urgaonkar, S.; McLaughlin, P. A.; Verkade, J. G. J. Am. Chem. Soc. 2004, 126,
16433–16439; (e) Pereira, R.; Furst, A.; Iglesias, B.; Germain, P.; Gronemeyer,
H.; de Lera, A. R. Org. Biomol. Chem. 2006, 4, 4514–4525; (f) Zhao, C.; Zhang, Y.;
Wang, C.; Rothberg, L.; Ng, M.-K. Org. Lett. 2006, 8, 1585–1588; (g) Uchiyama,
Y.; Ohta, A.; Fujimori, K. Heterocycles 2007, 74, 251–257.
3. (a) Wu, X.; Rieke, R. D. J. Org. Chem. 1995, 60, 6658–6659; (b) Rieke, R. D.; Kim,
S.-H.; Wu, X. J. Org. Chem. 1997, 62, 6921–6927; (c) Izmer, V. V.; Lebedev, A. Y.;
Nikulin, M. V.; Ryabov, A. N.; Asachenko, A. F.; Lygin, A. V.; Sorokin, D. A.;
Voskoboynikov, A. Z. Organometallics 2006, 25, 1217–1229.
4. (a) Hark, R. R.; Hauze, D. B.; Petrovskaia, O.; Joullie, M. M.; Jaouhari, R.;
McComiskey, P. Tetrahedron Lett. 1994, 35, 7719–7722; (b) Burk, M. J.; Lee, J. R.;
Martinez, J. P. J. Am. Chem. Soc. 1994, 116, 10847–10848; (c) Chamoin, S.;
Houldsworth, S.; Kruse, C. G.; Bakker, W. I.; Snieckus, V. Tetrahedron Lett. 1998,
39, 4179–4182; (d) Pereira, R.; Iglesias, B.; de Lera, A. R. Tetrahedron 2001, 57,
7871–7881; (e) Feuerstein, M.; Doucet, H.; Santelli, M. J. Organomet. Chem.
2003, 687, 327–336; (f) Molander, G. A.; Biolatto, B. J. Org. Chem. 2003, 68,
4302–4314; (g) Yam, V. W.-W.; Ko, C.-C.; Zhu, N. J. Am. Chem. Soc. 2004, 126,
12734–12735; (h) Berthiol, F.; Kondolff, I.; Doucet, H.; Santelli, M. J. Organomet.
Chem. 2004, 689, 2786–2798; (i) Kondolff, I.; Doucet, H.; Santelli, M. Synlett
2005, 2057–2061; (j) Korolev, D. N.; Bumagin, N. A. Tetrahedron Lett. 2005, 46,
5751–5754; (k) Ko, C.-C.; Kwok, W.-M.; Yam, V. W.-W.; Phillips, D. L. Chem. Eur.
J. 2006, 12, 5840–5848; (l) Arvela, R. K.; Leadbeater, N. E.; Mack, T. L.; Kormos,
C. M. Tetrahedron Lett. 2006, 47, 217–220; (m) Dang, T. T.; Rasool, N.; Dang, T.
T.; Reinke, H.; Langer, P. Tetrahedron Lett. 2007, 48, 845–847; (n) Billingsley, K.;
Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358–3366; (o) Kondolff, I.; Doucet,
H.; Santelli, M. J. Het. Chem. 2008, 45, 109–118; (p) Molander, G. A.; Canturk, B.;
Kennedy, L. E. J. Org. Chem. 2009, 74, 973–980.
15. As
a typical experiment (Table 3, entry 3), the reaction of 2-acetyl-5-
methylthiophene (0.420 g, 3 mmol), 4-bromobenzonitrile (0.182 g, 1 mmol)
and KOAc (0.196 g, 2 mmol) at 120 °C over 20 h in dry DMAc (5 mL) in the
presence of Pd(OAc)2 (0.01 mmol) under argon affords the corresponding
product 10 after evaporation and filtration on silica gel in 63% (0.152 g)
isolated yield.
16. All compounds gave satisfactory 1H, 13C and elementary analysis. 1H NMR
(200 MHz, CDCl3) of new compounds: 1: d 10.0 (s, 1H), 7.93 (d, J = 8.5 Hz, 2H),
7.55 (d, J = 8.5 Hz, 2H), 6.77 (s, 1H), 2.48 (s, 6H); 2: d 7.95–7.80 (m, 4H), 7.70–
7.40 (m, 5H), 6.78 (s, 1H), 2.51 (s, 3H), 2.49 (s, 3H); 3: d 8.02 (d, J = 8.5 Hz, 2H),
7.47 (d, J = 8.5 Hz, 2H), 6.75 (s, 1H), 3.05 (q, J = 7.5 Hz, 2H), 2.48 (s, 6H), 1.27 (t,
J = 7.5 Hz, 3H); 4: d 7.67 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 6.73 (s, 1H),
2.47 (s, 6H); 5: d 7.69 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 6.72 (s, 1H),
2.47 (s, 6H); 6: d 8.27 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 6.76 (s, 1H),
2.49 (s, 6H); 7: d 7.77 (d, J = 7.6 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.50–7.30 (m,
2H), 6.69 (s, 1H), 2.50 (s, 3H), 2.43 (s, 3H); 8: d 8.00–7.65 (m, 3H), 7.58–7.27 (m,
4H), 6.69 (s, 1H), 2.52 (s, 3H), 2.22 (s, 3H); 9: d 7.72 (d, J = 8.1 Hz, 2H), 7.71 (s,
1H), 7.52 (d, J = 8.1 Hz, 2H), 2.57 (s, 6H); 10: d 7.78 (d, J = 8.3 Hz, 2H), 7.61 (s,
1H), 7.50 (d, J = 8.3 Hz, 2H), 2.52 (s, 6H); 11: d 7.61 (s, 1H), 7.30 (dd, J = 8.0 and
4.5 Hz, 2H), 7.12 (t, J = 8.0 Hz, 2H), 2.52 (s, 3H), 2.50 (s, 3H); 12: d 7.69–7.60 (m,
5H), 2.57 (s, 3H), 2.56 (s, 3H); 13: d 7.77 (d, J = 8.3 Hz, 1H), 7.72 (m, 1H), 7.68 (s,
1H), 7.55–7.25 (m, 2H), 2.53 (s, 3H), 2.46 (s, 3H); 14: d 7.80 (d, J = 8.1 Hz, 1H),
7.70–7.45 (m, 3H), 7.25 (d, J = 8.1 Hz, 1H), 2.54 (s, 3H), 2.30 (s, 3H); 15: d 7.61
(s, 1H), 7.45–7.05 (m, 4H), 2.54 (s, 3H), 2.45 (s, 3H); 16: d 9.21 (s, 1H), 8.80 (s,
2H), 7.63 (s, 1H), 2.52 (s, 6H); 17: d 10.10 (s, 1H), 9.89 (s, 1H), 7.99 (d, J = 8.5 Hz,
2H), 7.76 (s, 1H), 7.58 (d, J = 8.5 Hz, 2H), 2.63 (s, 3H); 18: d 10.10 (s, 1H), 9.79 (s,
1H), 7.99 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 6.98 (s, 1H), 2.62 (s, 3H).
5. Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174–238.
6. Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200–205.
7. Doucet, H.; Hierso, J. C. Curr. Opin. Drug Discov. Devel. 2007, 10, 672–690.
8. Campeau, L.-C.; Stuart, D. R.; Fagnou, K. Aldrichim. Acta 2007, 40, 35–41.
9. Roger, J.; Doucet, H. Org. Biomol. Chem. 2008, 6, 169–174.
10. (a) Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.; Miyafuji, A.; Nakata,
T.; Tani, N.; Aoyagi, Y. Heterocycles 1990, 31, 1951–1958; (b) Pivsa-Art, S.;