5 G. R. Newkome, A. K. Patri, E. Holder and U. S. Schubert, Eur. J. Org.
Chem., 2004, 235.
23 K. Halbauer, A. Go¨bel, A. Sterzik, H. Go¨rls, S. Rau and W. Imhof,
Eur. J. Inorg. Chem., 2007, 1508.
24 At the request of the editor, synthetic and crystal structure experimental
details have been moved to the ESI†.
25 E. Negishi, ‘Overview of the Negishi Protocol with Zn, Al, Zr,
and Related Metals’, in Handbook of Organopalladium Chemistry for
Organic Synthesis, ed. E. Negishi, Wiley & Sons, New York, 2002, Vol.
1, pp. 229–247.
6 P. G. Sammes and G. Yahioglu, Chem. Soc. Rev., 1994, 23, 327.
7 Y. Yasui, D. K. Frantz and J. S. Siegel, Org. Lett., 2006, 8, 4989.
8 C.-W. Chen and H. W. Whitlock, J. Am. Chem. Soc., 1978, 100, 4921.
9 (a) S. C. Zimmerman and C. M. VanZyl, J. Am. Chem. Soc., 1987, 109,
7894; (b) S. C. Zimmerman and K. W. Saionz, J. Am. Chem. Soc., 1995,
117, 1175.
10 (a) A. E. Rowan, J. A. A. W. Elemans and R. J. M. Nolte, Acc. Chem.
Res., 1999, 32, 995; (b) F.-G. Kla¨rner and B. Kahlert, Acc. Chem. Res.,
2003, 36, 919.
11 R. Uso´n, L. A. Oro, J. Gimeno, M. A. Ciriano, J. A. Cabeza, A.
Tiripicchio and M. T. Camellini, J. Chem. Soc. Dalton Trans., 1983,
323.
12 For BBI complexes with metals in group 8, see: (a) D. Boinnard, P.
Cassoux, V. Petrouleas, J.-M. Savariault and J.-P. Tuchagues, Inorg.
Chem., 1990, 29, 4114; (b) M. Haga, Inorg. Chem. Acta, 1983, 75, 29;
(c) M. Haga and A. M. Bond, Inorg. Chem., 1986, 25, 4507; (d) S. Rau,
B. Scha¨fer, A. Gru¨ßing, S. Schebesta, K. Lamm, J. Vieth, H. Go¨rls, D.
Walther, M. Rudolph, U. W. Grummt and E. Birkner, Inorg. Chem.
Acta, 2004, 357, 4496.
13 For BBI complexes with metals in group 10, see: (a) A. C. Dash, A. N.
Acharya and R. Sahoo, Transition Met. Chem., 1996, 21, 337; (b) R.
Uso´n, J. Gimeno, L. A. Oro, M. A. Aznar and J. A. Cabeza, Polyhedron,
1983, 2, 163.
14 For BBI complexes with metals in group 11, see: (a) S. S. Lemos,
V. M. Deflon, K. E. Bessler, M. P. Abbott and E. Niquet, Transition
Met. Chem., 2004, 29, 46; (b) R. Uso´n, J. Vicente and M. T. Chicote,
J. Organomet. Chem., 1981, 209, 271.
26 The molecular structure of 1,1¢-bis(tert-butoxycarbonyl)-4,4¢-dibromo-
6,6¢-dimethyl-BBI shows an anti conformation.
27 (a) V. Goulle and R. P. Thummel, Inorg. Chem., 1990, 29, 1767; (b) Z.
Shi and R. P. Thummel, J. Org. Chem., 1995, 60, 5935.
28 Refs. 11–18.
29 Optimized structures for 1,1¢-bridged biindoles using early low-level
calculations have been reported in ref. 27a.
30 For information about the synthesis of 1,1¢-bridged BBI and 1,1¢;3,3¢-
dibridged 2,2¢-bibenzimidazolium salts, see ref. 27b and R. P. Thummel,
V. Goulle and B. Chen, J. Org. Chem., 1989, 54, 3057.
31 Although it is true that the 4-MeOC6H5-group does not exhibit true
“free” rotation (DG‡rot = 0), the rotational barrier could be expected to
be quite low, allowing for fast rotation at room temperature.
32 The aBBI measurements were calculated as the dihedral angle between
planes of best fit for all nine atoms of each bibenzimidazole moiety
system.
33 The f torsion angles were measured as the dihedral angle between
two planes: (1) the calculated plane of the six atoms in the ring
directly attached to the BBI moiety at the 4- and 4¢-positions; (2) the
calculated plane of the nine-atom benzimidazole moiety to which the
aryl substituent is attached.
15 (a) M. P. Gamasa, E. Garcia, J. Gimeno and C. Ballesteros,
J. Organomet. Chem., 1986, 307, 39; (b) J. R. Gala´n-Mascaro´s and
K. R. Dunbar, Angew. Chem. Int. Ed., 2003, 42, 2289. See refs. 12c and
11.
16 For BBI–Ti complexes, see: B. F. Fieselmann, D. N. Hendrickson and
G. D. Stucky, Inorg. Chem., 1978, 17, 2078.
34 Throughout this work, molecular structures that have been computed
by DFT calculations will be referred to as ‘computational structures’
and molecular structures that have been determined by X-ray crystal-
lography will be referred to as ‘experimental structures’.
35 M. V. Baker, D. H. Brown, V. J. Hesler, B. W. Skelton and A. H. White,
Organometallics, 2007, 26, 250.
17 For BBI complexes with metals of groups 7 and 8, see: (a) P. H. Dinolfo,
K. D. Benkstein, C. L. Stern and J. T. Hupp, Inorg. Chem., 2005, 44,
8707; (b) M. Haga and A. M. Bond, Inorg. Chem., 1991, 30, 475; (c) M.
Haga, T. Matsumura-Inoue and S. Yamabe, Inorg. Chem., 1987, 26,
4148. See refs. 12b,c.
18 For BBI complexes with metals of groups 9, 10 and 11, see: (a) D.
Carmona, J. Ferrer, A. Mendoza, F. J. Lahoz, L. A. Oro, F. Viguri and
J. Reyes, Organometallics, 1995, 14, 2066; (b) R. Uso´n and J. Gimeno,
J. Organomet. Chem., 1981, 220, 173; (c) R. Uso´n, J. Gimeno, J. Fornie´s
and F. Mart´ınez, Inorg. Chem. Acta, 1981, 50, 173; (d) M. S. Haddad
and D. N. Hendrickson, Inorg, Chem., 1978, 17, 2622; (e) R. Uso´n,
J. Vicente and M. T. Chicote, J. Organomet. Chem., 1981, 209, 271;
(f) B.-C. Tzeng, D. Li, S.-M. Peng and C.-M. Che, J. Chem. Soc. Dalton
Trans., 1993, 2365. See refs. 11, 13b and 14a.
36 The atomic displacement ellipsoids are shown at 30% probability.
37 Average planes were calculated from the carbon and nitrogen atoms
comprising the bibenzimidazole moieties in neighboring molecules. The
mentioned angle refers to the angle between these two planes.
38 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. J. Montgomery, R. E.
Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V.
Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi,
R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W.
Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M.
Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision
A.6, Pittsburgh PA, 1998.
19 S. Rau, M. Ruben, T. Bu¨ttner, C. Temme, S. Dautz, H. Go¨rls, M.
Rudolph, D. Walther, M. Duati, S. Fanni and J. G. Vos, J. Chem. Soc.
Dalton Trans., 2000, 3649.
20 S. Rau, T. Bu¨ttner, C. Temme, M. Ruben, H. Go¨rls, D. Walther, M.
Duati, S. Fanni and J. G. Vos, Inorg. Chem., 2000, 39, 1621.
21 S. Rau, B. Scha¨fer, S. Schebesta, A. Gru¨ßing, W. Poppitz, D. Walther,
M. Duati, W. R. Browne and J. G. Vos, Eur J. Inorg. Chem., 2003, 1503.
22 S. Rau, L. Bo¨ttcher, S. Schebesta, M. Stollenz, S. Go¨rls and D. Walther,
Eur. J. Inorg. Chem., 2002, 2800.
39 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon,
J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L.
Windus and S. T. Elbert, J. Comp. Chem., 1993, 14, 1347.
40 A. D. Boese and J. M. L. Martin, J. Chem. Phys., 2004, 121, 3405.
41 T. H. Dunning, J. Chem. Phys., 1989, 90, 1007.
42 K. K. Baldridge and J. P. Greenberg, J. Mol. Graphics, 1995, 13, 63.
2352 | Org. Biomol. Chem., 2009, 7, 2347–2352
This journal is
The Royal Society of Chemistry 2009
©