ORGANIC
LETTERS
2009
Vol. 11, No. 12
2651-2654
Two Novel Domino Reactions Triggered
by Thiyl-Radical Addition to
Vinylcyclopropyl Oxime Ether
Habibur Rahaman, Masafumi Ueda, Okiko Miyata, and Takeaki Naito*
Kobe Pharmaceutical UniVersity, 4-19-1, Motoyamakita, Higashinada,
Kobe 658-8558, Japan
Received April 3, 2009
ABSTRACT
Two domino reactions of vinylcyclopropyl oxime ethers involving (i) thiyl radical addition, ring-opening, and hydroxylation reactions and (ii)
thiyl radical addition, ring-opening, and aldol-type reactions were developed.
The classical thiol-olefin co-oxygenation reaction, tradition-
ally called hydroxysulfenylation, is an instrumental step in
the multistep synthesis of functionalized cyclic peroxide.
Hydroxysulfenylation is one of the interesting modes of
reactions in organic synthesis that leads to the production
of many functionalized products.1 A diverse array of
hydroxysulfenylations including the electron-rich or electron-
deficient alkenes as radical acceptors has been documented.2
The ring-opening hydroxysulfenylation reaction is poorly
understood. Feldman and Parvez have widened the scope of
the thiol-olefin co-oxygenation reaction on vinylcyclopropyl
derivatives and opened avenues to the synthesis of sulfur-
free five-membered cyclic peroxides.3 On the other hand,
the multicomponent reaction involving the domino process
is an important field of research and attracts great interest
and use in organic syntheses. A handful of examples on the
thiophenol-catalyzed domino reaction leading to the produc-
tion of the cyclopentane derivatives have been reported.4
However, the domino reaction involving a multiprocess
leading to the formation of the carbon-sulfur and carbon-
carbon bond is restricted. Recently, we have published two
(1) (a) Beckwith, A. L. J.; Wagner, R. D. J. Am. Chem. Soc. 1979, 101,
7099. (b) Iriuchijima, S.; Maniwa, K.; Sakakibara, T.; Tsuchihashi, G. J.
Org. Chem. 1974, 39, 1170. (c) LeBel, N. A.; Czaja, R. F.; DeBoer, A. J.
Org. Chem. 1969, 34, 3112. (d) Ito, O. In S-Centered Radicals; Alfassi,
Z. B., Ed.; Wiley: Chichester, 1999 193. (e) Korshin, E. E.; Hoos, R.;
Szpilman, A. M.; Konstantinovski, L.; Posner, G. H.; Bachi, M. D.
Tetrahedron 2002, 58, 2449. (f) Kim, J.; Li, H. B.; Rosenthal, A. S.; Sang,
D.; Shapiro, T. A.; Bachi, M. D.; Posner, G. H. Tetrahedron 2006, 62,
4120. (g) Griesbaum, K. Angew. Chem., Int. Ed. Engl. 1970, 9, 273. (h)
Bertrand, M. P.; Ferreri, C. In Radicals in Organic Synthesis; Renaud, P.,
Sibi, M. P., Eds.; Wiley-VCH: Weinheim, 2001; p 485.
(3) (a) Feldman, K. S.; Simpson, R. E.; Parvez, M. J. Am. Chem. Soc.
1986, 108, 1328. (b) Feldman, K. S.; Simpson, R. E. J. Am. Chem. Soc.
1989, 111, 4878. (c) Feldman, K. S.; Simpson, R. E. Tetrahedron Lett.
1989, 30, 6985.
(2) (a) O’Neill, P. M.; Mukhtar, A.; Ward, S. A.; Bickley, J. F.; Davies,
J.; Bachi, M. D.; Stocks, P. A. Org. Lett. 2004, 6, 3035. (b) O’Neill, P. M.;
Verissimo, E.; Ward, S. A.; Davies, J.; Korshin, E. E.; Araujo, N.; Pugh,
M. D.; Cristiano, M. L. S.; Stocks, P. A.; Bachi, M. D. Bioorg. Med. Chem.
Lett. 2006, 16, 2991. (c) Baucherel, X.; Uziel, J.; Juge, S. J. Org. Chem.
2001, 66, 4504. (d) Ueda, M.; Miyabe, H.; Shimizu, H.; Sugino, H.; Miyata,
O.; Naito, T. Angew. Chem., Int. Ed. 2008, 47, 5600.
(4) (a) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E., Jr.; Miller, R. F.
J. Am. Chem. Soc. 1988, 110, 3300. (b) Feldman, K. S.; Berven, H. M.;
Weinreb, P. H. J. Am. Chem. Soc. 1993, 115, 11364. (c) Miura, K.; Fugami,
K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 1543–1988; 29,
5135. (d) Kim, S.; Lee, S. Tetrahedron Lett. 1991, 32, 6575. (e) Huval,
C. C.; Singleton, D. A. J. Org. Chem. 1994, 59, 2020. (f) Singleton, D. A.;
Church, K. M. J. Org. Chem. 1990, 55, 4780.
10.1021/ol900604a CCC: $40.75
Published on Web 05/19/2009
2009 American Chemical Society