Towards the Synthesis of 3-Sila-Piperidines
[5]
a) H. Alper, M. S. Wolin, J. Org. Chem. 1975, 40, 437–438; b)
H. Alper, M. S. Wolin, J. Organomet. Chem. 1975, 99, 385–389;
c) P. Heinonen, H. Sipilä, K. Neuvonen, H. Lönnberg, V. B.
Cockroft, S. Wurster, R. Virtanen, M. K. T. Savola, J. S. Sa-
lonen, J. M. Savola, Eur. J. Med. Chem. 1996, 31, 725; d) U.
Wannagat, R. Münstedt, U. Harder, Liebigs Ann. Chem. 1985,
950–958; e) M. W. Buettner, C. Burschka, J. O. Daiss, D. Iv-
anova, N. Rochel, S. Kammerer, C. Peluso-Iltis, A. Bindler, C.
Gaudon, P. Germain, D. Moras, H. Gronemeyer, R. Tacke,
ChemBioChem 2007, 8, 1688–1699 and references cited therein;
f) H. Tilman, C. Burschka, J. Warneck, R. Tacke, Organometal-
lics 2004, 23, 361–366; g) B. Vivet, F. Cavelier, J. Martinez, Eur.
J. Org. Chem. 2000, 807–811; h) F. Cavelier, B. Vivet, J. Marti-
nez, A. Aubry, C. Didierjean, A. Vicherat, M. Marraud, J. Am.
Chem. Soc. 2002, 124, 2917–2923.
Scheme 7.
Conclusions
In conclusion, we have reported an interesting and
straightforward method towards the synthesis of unprece-
dented 3-silapiperidines. Our strategy relies on a formal
double nucleophilic substitution reaction involving a N,C-
sp2-1,4-dianionic species generated from N-monoprotected
allylamines and takes advantage of the remarkable but yet
underexploited 1,2-dielectrophilic properties of (bro-
momethyl)dimethylsilyl chloride. Subsequent functionaliza-
tions proved to be successful and, while providing a variety
of new sila derivatives, also opens new and promising op-
portunities towards the synthesis of sila analogues of bio-
logical interest.
[6]
a) R. J. Fessenden, M. D. Coon, J. Org. Chem. 1964, 29, 1607–
1610; b) E. D. Babich, V. N. Karel’skii, V. M. Vdovin, N. S. Na-
metkin, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.)
1968, 17, 1312; c) R. Dedeyne, M. J. O. Anteunis, Bull. Soc.
Chim. Belg. 1976, 85, 319–331; d) M. J. O. Anteunis, R. Dede-
yne, Org. Magn. Reson. 1977, 9, 127–132; e) S. V. Kirpichenko,
A. T. Abrosimova, A. I. Albanov, M. G. Voronkov, Russ. J.
Gen. Chem. 2001, 71, 1874–1878; f) S. Wendeborn, C. Lam-
berth, K. Nebel, P. J. Crowley, H. Nussbaumer, PCT WO 2006/
066872 A1, 2006. See also: g) Y. Sato, Y. Fukami, H. Shirai, J.
Organomet. Chem. 1974, 78, 75–81; h) E. Lukevics, S. Ger-
mane, I. Segal, A. Zablotskaya, Chem. Heterocycl. Compd.
1997, 33, 234–238; i) R. Sanz, J. M. Ignacio, M. Pilar Castrov-
iejo, F. Fañanas, ARKIVOC 2007, 84–91.
The isomerization of N-Boc allylamines in the presence of first
generation Grubbs’ catalyst has been reported: a) J. F.
Reichwein, R. M. J. Liskamp, Eur. J. Org. Chem. 2000, 2335–
2344; b) T. R. Hoye, H. Zhao, Org. Lett. 1999, 1, 169–171; c)
For an account on this, see: B. Alcaide, P. Almendros, Chem.
Eur. J. 2003, 9, 1259–1262 and references cited therein.
The First generation Grubbs’ catalyst has been shown to form
ruthenium hydride species above 60 °C: B. Marciniec, M. Ku-
jawa, C. Pietraszuk, New J. Chem. 2000, 24, 671–675 and refer-
ences cited therein.
Ruthenium hydride species are known to be excellent catalysts
for the migration of terminal olefins: a) T. Naota, H. Takaya,
S.-I. Murahashi, Chem. Rev. 1998, 98, 2599–2660 and refer-
ences cited therein. For applications, see: b) B. Alcaide, P. Al-
mendros, J. M. Alonso, M. F. Aly, Org. Lett. 2001, 3, 3781–
3784; c) C. Bressy, C. Menant, O. Piva, Synlett 2005, 577–582
and references cited therein.
a) A. G. M. Barrett, J. C. Beall, D. C. Braddock, K. Flack,
V. C. Gibson, M. M. Salter, J. Org. Chem. 2000, 65, 6508–6514
and references cited therein; b) S. E. Denmark, S.-M. Yang,
Org. Lett. 2001, 3, 1749–1752; c) M. Schuman, V. Gouverneur,
Tetrahedron Lett. 2002, 43, 3513–3516. See also: d) C. Pie-
traszuk, B. Marciniec, H. Fisher, Organometallics 2000, 19,
913–917.
Acknowledgments
[7]
Financial support from CNRS, UPMC and IUF is gratefully ac-
knowledged. The authors thank the Ministère de la Recherche for
a PhD grant to C. B. and C. B.
[8]
[9]
[1] For reviews, see: a) J. Dubac, A. Laporterie, G. Manuel, Chem.
Rev. 1990, 90, 215–263; b) B. J. Aylett, A. C. Sullivan in The
Comprehensive Organometallic Chemistry II (Eds.: E. W. Abel,
F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, 1995, p. 45;
c) L. Fensterbank, M. Malacria, S. M. Sieburth, Synthesis
1997, 813–854; d) J. Hermanns, B. Schmidt, J. Chem. Soc., Per-
kin Trans. 1 1998, 14, 2209–2230; e) J. Hermanns, B. Schmidt,
J. Chem. Soc., Perkin Trans. 1 1999, 2, 81–102; f) G. Rousseau,
L. Blanco, Tetrahedron 2006, 62, 7951–7993. For recent contri-
butions: g) M. Leconte, S. Pagano, A. Mutch, F. Lefebvre, J. M.
Basset, Bull. Soc. Chim. Fr. 1995, 132, 1069–1071; h) I. Ahmad,
I. M. L. Falck-Pedersen, K. Undheim, J. Organomet. Chem.
2001, 625, 160–172; i) Y. Landais, C. Mahieux, K. Schenk, S. S.
Surange, J. Org. Chem. 2003, 68, 2779–2789; j) S. Diez-Gonza-
lez, L. Blanco, J. Organomet. Chem. 2006, 691, 5531–5539; k)
N. Agenet, J.-H. Mirebeau, M. Petit, R. Thouvenot, V. Gan-
don, M. Malacria, C. Aubert, Organometallics 2007, 26, 819–
830; l) S. Sen, M. Purushotham, Y. Qi, S. M. Sieburth, Org.
Lett. 2007, 9, 4963–4965; m) T. Sudo, N. Asao, Y. Yamamoto,
J. Org. Chem. 2000, 65, 8919–8923; n) S. Diez-Gonzalez, R.
Paugam, L. Blanco, Eur. J. Org. Chem. 2008, 3298–3307.
[2] See for instance: a) S. Mansel, U. Rief, M.-H. Prosenc, R. Kir-
sten, H.-H. Brintzinger, J. Organomet. Chem. 1996, 512, 225–
236; b) H. J. G. Luttikhedde, R. P. Leino, J. H. Näsman, M.
Ahlgrén, T. Pakkanen, J. Organomet. Chem. 1995, 486, 193–
198.
[10]
[11]
[12]
a) K. D. Onan, A. T. McPhail, C. H. Yoder, R. W. Hillyard, J.
Chem. Soc., Chem. Commun. 1978, 209–210; b) A. A. Machar-
ashvili, V. E. Shklover, Y. T. Struchkov, G. I. Oleneva, E. P.
Kramarova, A. G. Shipov, Y. I. Baukov, J. Chem. Soc., Chem.
Commun. 1988, 683–685.
See also: a) M. G. Voronkov, Y. L. Frolov, V. M. D’Yakov,
N. N. Chipanina, L. I. Gubanova, G. A. Gavrilova, L. V.
Klyba, T. N. Aksamentova, J. Organomet. Chem. 1980, 201,
165–177; b) M. G. Voronkov, E. A. Zel’bst, A. A. Kashaev,
Y. V. Katkevich, V. A. Bruskov, N. F. Lazareva, A. I. Albanov,
V. A. Pestunov, Dod. Akad. Nauk 2002, 386, 628–631.
C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young, Chem. Rev.
1993, 93, 1371–1448 and references cited therein.
[3] J. Guay, A. Diaz, R. Wu, J. M. Tour, J. Am. Chem. Soc. 1993,
115, 1869–1874.
[4] For an account on bioactive organosilanes, see: a) S. M. Sieb-
urth, C.-A. Chen, Eur. J. Org. Chem. 2006, 311–322. See also:
b) P. Ghosh, D. Shabat, S. Kumar, S. C. Sinha, F. Grynszpan,
J. Li, L. Noodleman, E. Keinan, Nature 1996, 382, 339. For
reviews on pharmacologically active sila species: c) R. Tacke,
U. Wannagat, Top. Curr. Chem. 1979, 84, 1; d) W. Bains, R.
Tacke, Curr. Opin. Drug Discovery Dev. 2003, 6, 526–543.
[13]
[14]
For a description of a variety of dianionic species and their use
in synthesis, see: a) C. M. Thompson, D. L. Green, Tetrahedron
1991, 47, 4223–4285 and references cited therein. For pioneer-
ing works, see: b) G. T. Morgan, T. M. Harris, J. Am. Chem.
Eur. J. Org. Chem. 2009, 1674–1678
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1677