Biodegradable Protections for 5′-Monophosphates
S-acyl-2-thioethyl,4 2-(2-hydroxyethyldisulfanyl)ethyl,5 4-acyloxy-
benzyl,2a,6 1-acyloxypropan-1,3-diyl,7 and 1-arylpropan-1,3-diyl8
functional groups. In addition, cyclosaligenyl nucleotides,9
phosphoramidates,8b,10 diamidates,11 lipid esters,12 nitrofura-
nylmethylamidates,13 and bis-ketol nucleotide triesters14 have
been studied as pro-drugs. Despite the fact that some pronucle-
SCHEME 1
(3) (a) Tang, Y.-b.; Peng, Z.-g.; Liu, Z.-y.; Li, Y.-p.; Jiang, J.-d.; Li, Z.-r.
Bioorg. Med. Chem. Lett. 2007, 17, 6350–6353. (b) Mackman, R. L.; Zhang,
L.; Prasad, V.; Boojamra, C. G.; Douglas, J.; Grant, D.; Hui, H.; Kim, C. U.;
Laflamme, G.; Parrish, J.; Stoycheva, A. D.; Swaminathan, S.; Wang, K.; Cihlar,
T. Bioorg. Med. Chem. 2007, 15, 5519–5528. (c) De Clercq, E.; Holy, A. Nat.
ReV. Drug DiscoVery 2005, 4, 928–940. (d) Armirilli, M. N.; Kim, C. U.;
Dougherty, J.; Mulato, A.; Oliyai, R.; Shaw, J.-P.; Cundy, K. C.; Bischofberger,
N. AntiViral Chemother. 1997, 8, 557–564. (e) Shaw, J.-P.; Sueoka, C. M.; Oliyai,
R.; Lee, W. A.; Arimilli, M. N.; Kim, C. U.; Cundy, K. C. Pharm. Res. 1997,
14, 1824–1829.
(4) (a) Villard, A.-L.; Coussot, G.; Lefebvre, I.; Augustijns, P.; Aubertin,
A.-M.; Gosselin, G.; Peyrottes, S.; Perigaud, C. Bioorg. Med. Chem. 2008, 16,
7321–7329. (b) Peyrottes, S.; Egron, D.; Lefebvre, I.; Gosselin, G.; Imbach,
J. L.; Perigaud, C. Mini-ReV. Med. Chem 2004, 4, 395–408, and references cited
therein. (c) Perigaud, C.; Gosselin, G.; Lefebvre, I.; Girardet, J. L.; Benzaria,
S.; Barber, I.; Imbach, J. L. Bioorg. Med. Chem. Lett. 1993, 3, 2521–2526.
(5) Puech, F.; Gosselin, G.; Lefebvre, I.; Pompon, A.; Aubertin, A.-M.; Kirn,
A.; Imbach, J.-L. AntiViral Res. 1993, 22, 155–174.
otides have been accepted for clinical use and quite many have
advanced into clinical phase studies,1a many questions have still
to be answered to achieve a proper compromise between
chemical stability, cellular uptake, rate of biodegradation and
byproduct toxicity.
Bis(acyloxymethyl) pro-drugs, constituting one of the most
commonly used pro-drug categories, have been suggested to
undergo an enzyme-triggered conversion to nucleoside mono-
phosphates via a monoanionic diester intermediate.2g In spite
of the wide interest in this approach, the kinetic data on the
consecutive esterase-catalyzed cleavage of the neutral triester
pro-drugs to monoanionic diesters and eventually to nucleoside
phosphates is surprisingly scarce, being limited to the early
studies of Farquhar et al.15 on the cleavage of bis(acyloxym-
ethyl)esters of benzyl and phenyl phosphates. According to these
studies, the rate of the first enzymatic step can be controlled by
different acyl groups, but the second step remains slow due to
the short distance between the enzyme cleavage site and the
negative charge of the phosphodiester intermediate. The studies
of Freeman et al. with acyloxybenzyl esters of methylphos-
phonate,16a phosphonoacetate,16b and 5′-monophosphate of
azidothymidine,6b in turn, suggest that the benzene ring as a
spacer between the acyl group and the anionic phosphate
accelerates the cleavage of both the neutral triester and monoan-
ionic diester by porcine liver carboxyesterase.
We have recently introduced 2,2-bis(substituted)-3-acyloxy-
propyl groups as biodegradable phosphate protecting groups.
Studies with dinucleoside phosphoromonothioates17 and oligo-
nucleotides18 have shown that such groups are stable under
physiological conditions, but are cleaved by retro-aldol con-
densation after enzymatic deacylation (Scheme 1).
The hydrolytic stability of the deacylated intermediate may
be tuned within wide limits by the polar nature of the
substituents at C2.19,20 The present paper is aimed at clarifying
the applicability of one such group, viz., the 3-acetyloxy-2,2-
bis(ethoxycarbonyl)propyl group, to protection of nucleoside
phosphomonoesters. While the first protecting group obviously
is cleaved from the neutral triester at a rate comparable to the
cleavage from an internucleosidic phosphodiester linkage, the
departure from the resulting nucleoside diester monoanion
(6) (a) Routledge, A.; Walker, I.; Freeman, S.; Hay, A.; Mahmood, N.
Nucleosides Nucleotides 1995, 14, 1545–1558. (b) Thomson, W.; Nicholls, D.;
Irwin, W. J.; Al-Mushadani, J. S.; Freeman, S.; Karpas, A.; Petrik, J.; Mahmood,
N.; Hay, A. J. J. Chem. Soc., Perkin Trans. 1 1993, 1239–1245.
(7) Farquhar, D.; Chen, R.; Khan, S. J. Med. Chem. 1995, 38, 488–495.
(8) (a) Reddy, K. R.; Matelich, M. C.; Ugarkar, B. G.; Gomez-Galeno, J. E.;
DaRe, J.; Ollis, K.; Sun, Z.; Craigo, W.; Colby, T.; Fujitaki, J. M.; Boyer, S. H.;
van Poelje, P. D.; Erion, M. D. J. Med. Chem. 2008, 51, 666–676. (b) Liang,
Y.; Narayanasamy, J.; Schinazi, R.; Chu, C. K. Bioorg. Med. Chem. 2006, 14,
2178–2189. (c) Reddy, K. R.; Boyer, S. H.; Erion, M. D. Tetrahedron Lett.
2005, 46, 4321–4324. (d) Erion, M. D.; van Poelje, P. D.; Mackenna, D. A.;
Colby, T. J.; Montag, A. C.; Fujitaki, J. M.; Linemeyer, D. L.; Bullough, D. A.
J. Pharmacol. Exp. Ther. 2005, 312, 554–560. (e) Erion, M. D.; Reddy, K. R.;
Boyer, S. H.; Matelich, M. C.; Gomez-Galeno, J.; Lemus, R. H.; Ugarkar, B. G.;
Colby, T. J.; Schanzer, J.; van Poelje, P. D. J. Am. Chem. Soc. 2004, 126, 5154–
5163.
(9) (a) Gisch, N.; Pertenbreiter, F.; Balzarini, J.; Meier, C. J. Med. Chem.
2008, 51, 8115–8123. (b) Gisch, N.; Balzarini, J.; Meier, C. J. Med. Chem. 2008,
51, 6752–6760. (c) Ducho, C.; Go¨rbig, U.; Jessel, S.; Gisch, N.; Balzarini, J.;
Meier, C. J. Med. Chem. 2007, 50, 1335–1346. (d) Gisch, N.; Balzarini, J.; Meier,
C. J. Med. Chem. 2007, 50, 1658–1667. (e) Meier, C.; Ducho, C.; Jessen, H.;
Vukadinovic-Tenter, D.; Balzarini, J. Eur. J. Org. Chem. 2006, 197–206. (f)
Ludek, O. R.; Balzarini, J.; Meier, C. Eur. J. Org. Chem. 2006, 932–940. (g)
Jessen, H. J.; Fendrich, W.; Meier, C. Eur. J. Org. Chem. 2006, 924–931. (h)
Meier, C. Eur. J. Org. Chem. 2006, 1081–1102, and references cited therein.
(10) (a) Shen, W.; Kim, J.-S.; Kish, P. E.; Zhang, J.; Mitchell, S.; Gentry,
B. G.; Breitenbach, J. M.; Drach, J. C.; Hilfinger, J. Bioorg. Med. Chem. Lett.
2009, 19, 792–796. (b) Gunic, E.; Chow, S.; Rong, F.; Ramasamy, K.; Raney,
A.; Li, D. Y.; Huang, J.; Hamatake, R. K.; Hong, Z.; Girardet, J.-L. Bioorg.
Med. Chem. Lett. 2007, 17, 2456–2458. (c) Perrone, P.; Luoni, G. M.; Kelleher,
M. R.; Daverio, F.; Angell, A.; Mulready, S.; Congiatu, C.; Rajyaguru, S.; Martin,
J. A.; Leveque, V.; Le Pogam, S.; Najera, I.; Klumpp, K.; Smith, D. B.;
McGuigan, C. J. Med. Chem. 2007, 50, 1840–1849. (d) Adelfinskaya, O.;
Herdewijn, P. Angew. Chem., Int. Ed. 2007, 46, 4356–4358. (e) Mehellou, Y.;
McGuigan, C.; Brancale, A.; Balzarini, J. Bioorg. Med. Chem. Lett. 2007, 17,
3666–3669. (f) McGuigan, C.; Hassan-Abdallah, A.; Srinivasan, S.; Wang, Y.;
Siddiqui, A.; Daluge, S. M.; Gudmundsson, K. S.; Zhou, H.; McLean, E. W.;
Peckham, J. P.; Burnette, T. C.; Marr, H.; Hazen, R.; Condreay, L. D.; Johnson,
L.; Balzarini, J. J. Med. Chem. 2006, 49, 7215–7226. (g) McGuigan, C.; Harris,
S. A.; Daluge, S. M.; Gudmundsson, K. S.; McLean, E. W.; Burnette, T. C.;
Marr, H.; Hazen, R.; Condreay, L. D.; Johnson, L.; De Clercq, E.; Balzarini, J.
J. Med. Chem. 2005, 48, 3504–3515. (h) Cahard, D.; McGuigan, C.; Balzarini,
J. Mini-ReV. Med. Chem 2004, 4, 371–381, and references cited therein. (i)
Drontle, D. P.; Wagner, C. R. Mini-ReV. Med. Chem. 2004, 4, 409–419, and
references cited therein.
(15) (a) Srivastva, D. N.; Farquhar, D. Bioorg. Chem. 1984, 12, 118–129.
(b) Farquhar, D.; Srivastva, D. N.; Kuttesch, N. J.; Saunders, P. P. J. Pharm.
Sci. 1983, 72, 324–325.
(16) (a) Mittchell, A. G.; Nicholls, D.; Walker, I.; Irwin, W. J.; Freeman, S.
J. Chem. Soc., Perkin Trans. 2 1991, 1297–1303. (b) Mitchell, A. G.; Thompson,
W.; Nicholls, D.; Irwin, W. J.; Freeman, S. J. Chem. Soc., Perkin Trans. 1 1992,
1, 2345–2353.
(17) Poija¨rvi, P.; Oivanen, M.; Lo¨nnberg, H. Lett. Org. Chem. 2004, 1, 183–
188.
(18) Poija¨rvi, P.; Heinonen, P.; Virta, P.; Lo¨nnberg, H. Bioconj. Chem. 2005,
16, 1564–1571.
(11) (a) Keith, K. A.; Hitchcock, M. J.; Lee, W. A.; Holy, A.; Kern, E. R.
Antimicrob. Agents Chemother. 2003, 47, 2193–2198. (b) Jones, B. C. N. M.;
McGuigan, C.; O’Connor, T. J.; Jeffries, D. J.; Kinchington, D. AntiViral Chem.
1991, 2, 35–39.
(12) (a) Beadle, J. R.; Wan, W. B.; Ciesla, S. L.; Keith, K. A.; Hartline, C.;
Kern, E. R.; Hostetler, K. Y. J. Med. Chem. 2006, 49, 2010–2015. (b) Hostetler,
K. Y.; Aldern, K. A.; Wan, W. B.; Ciesla, S. L.; Beadle, J. R. Antimicrob. Agents
Chemother. 2006, 50, 2857–2859. (c) Wan, W. B.; Beadle, J. R.; Hartline, C.;
Kern, E. R.; Ciesla, S. L.; Valieva, N.; Hostetler, K. Y. Antimicrob. Agents
Chemother. 2005, 49, 656–662.
(13) (a) Tobias, S. C.; Borch, R. F. Mol. Pharm. 2003, 1, 112–116. (b) Tobias,
S. C.; Borch, R. F. J. Med. Chem. 2001, 44, 4475–4480.
(14) Calvo, K. C.; Wang, X.; Koser, G. F. Nucleosides Nucleotides Nucleic
Acids 2004, 23, 637–646.
(19) Ora, M.; Ma¨ki, E.; Poija¨rvi, P.; Neuvonen, K.; Oivanen, M.; Lo¨nnberg,
H. J. Chem. Soc., Perkin Trans. 2 2001, 881–885.
(20) Poija¨rvi, P.; Ma¨ki, E.; Tomperi, J.; Ora, M.; Oivanen, M.; Lo¨nnberg,
H. HelV. Chim. Acta 2002, 85, 1869–1876.
J. Org. Chem. Vol. 74, No. 14, 2009 4993