686 Zhou and Bian
106–108◦C; [α]D = +20.4 (c = 0.5, CHCl3). IR (KBr)
νmax (cm−1): 3445, 3031, 2937, 1672, 1457, 1321, 1147,
1081, 742, 700. 1H NMR (300 MHz, CDCl3), δ (ppm):
0.80–0.88 (m, 3H, CH3), 0.90–0.96 (m, 3H, CH3),
1.09–1.18 (m, 2H), 1.30–1.35 (m, 2H), 1.42–1.44 (m,
1H), 1.48–1.53 (m, 1H), 1.61–1.69 (m, 1H), 1.75–1.77
(m, 1H), 1.93–2.04 (m, 2H), 2.04–2.16 (m, 2H), 2.50
(t, J = 9.9 Hz, 2H), 2.92 (d, J = 7.5 Hz, 1H), 3.05–
3.19 (m, 2H), 3.42 (d, J = 7.5 Hz, 1H), 4.00–4.09 (m,
2H), 4.29–4.39 (m, 2H), 6.97 (s, 1H, Ar-H), 7.18–7.36
(m, 3H, Ar-H), 7.61 (s, 1H, Ar-H), 8.26 (s, 1H, NH).
Anal. Calcd for C23H34N2O2S: C 68.62, H 8.51, N 6.96;
Found: C 68.77, H 8.46, N 6.89.
7b: The crude product was recrystallized from
ethyl acetate to give a white solid. Yield 78.3%; mp
122–124◦C; [α]D = +36.6 (c = 0.5, CHCl3). IR (KBr)
νmax (cm−1): 3424, 2970, 2946, 1667, 1454, 1323, 1148,
1083, 741, 701. 1H NMR (300 MHz, CDCl3), δ (ppm):
0.70 (s, 3H, CH3), 0.90 (s, 3H, CH3), 1.32 (t, J = 4.8
Hz, 1H), 1.93–1.96 (m, 2H), 2.00–2.04 (m, 2H), 2.16
(s, 1H), 2.50 (d, J = 8.7 Hz, 1H), 2.92 (d, J = 7.2
Hz, 1H), 3.09 (d, J = 7.8 Hz, 1H), 4.00–4.08 (m, 2H),
4.28–4.35 (m, 2H), 6.97–7.29 (m, 10H, Ar-H), 8.26 (s,
1H, NH). Anal. Calcd for C24H30N2O2S: C 70.21, H
7.36, N 6.82; Found: C 70.33, H 7.29, N 6.77.
[6] Fan, Q. H.; Li, Y. M.; Chan, A. S. C. Chem Rev 2002,
102, 3385–3466.
[7] Palmer, M. J.; Wills, M. Tetrahedron: Asymmetry
1999, 10, 2045–2061.
[8] Noyori, R.; Hashiguchi, S. Acc Chem Res 1997, 30,
97–102.
[9] Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.;
Noyori, R. J Am Chem Soc 1995, 117, 7562–7563.
[10] Sandoval, C.; Ohkuma, T.; Utsumi, N.; Tsutsumi, K.;
Murata, K.; Noyori, R. Chem Asian J 2006, 1–2, 102–
110.
[11] Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori,
R. J Am Chem Soc 1997, 119, 8738–8739.
[12] Hamada, T.; Torii, T.; Onishi, T.; Izawa, K.; Ikariya,
T. J Org Chem 2004, 69, 7391–7394.
[13] Hannedouche, J.; Clarkson, G. J.; Wills, M. J Am
Chem Soc 2004, 126, 986–987.
[14] Hayes, A. M.; Morris, D. J.; Clarkson, G. J.; Wills, M.
J Am Chem Soc 2005, 127, 7318–7319.
[15] Matharu, D. S.; Morris, D. J.; Kawamoto, A. M.;
Clarkson, G. J.; Wills, M. Org Lett 2005, 7, 5489–5491.
[16] Wang, F.; Liu, H.; Cun, L.; Zhu, J.; Deng, J.; Jiang, Y.
J Org Chem 2005, 70, 9424–9429.
[17] Ma, Y.; Liu, H.; Chen, L.; Cui, X.; Zhu, J.; Deng, J.
Org Lett 2003, 5, 2103–2106.
[18] Liu, P.-N.; Gu, P.-M.; Deng, J.-G.; Tu Y.-Q.; Ma, Y.-P.
Eur J Org Chem 2005, 3221–3227.
[19] Liu, P. N.; Gu, P. M.; Wang, F.; Tu, Y. Q. Org Lett
2004, 6, 169–172.
[20] Li, X.; Chen, W.; Hems, W.; King, F.; Xiao, J. Tetra-
hedron Lett 2004, 45, 951–953.
[21] Arakawa, Y.; Haraguchi, N.; Itsuno, S. Tetrahedron
Lett 2006, 47, 3239–3243.
[22] Peach, P.; Cross, D. J.; Kenny, J. A.; Mann, I.; Houson,
I.; Campbell, L.; Walsgrove, T.; Wills, M. Tetrahedron
2006, 62, 1864–1876.
Typical Procedure for Asymmetric Transfer
Hydrogenation of Ketones
5c (0.02 mmol), [RuCl2(p-cymene)]2 (6.1 mg,
0.01 mmol) and 19.5 mL of isopropanol were added
to a flask under argon, and the mixture was stirred
at 60◦C for 1 h. A solution of 0.1 M of KOH in
isopropanol following acetophenone (2 mmol) was
added to the solution. The mixture was stirred un-
der argon at 60◦C for 48 h, acidified to pH 2 with
hydrochloric acid (1 M) and then was extracted
with ethyl acetate (15 mL × 3). The organic phase
was washed with brine and dried over anhydrous
Na2SO4. The conversion was determined by GC-MS.
The pure product was obtained by preparative TLC.
[23] Sterk, D.; Stephanb, M. S.; Mohar, B. Tetrahedron
Lett 2004, 45, 535–537.
[24] Thorpe, T.; Blacker, J.; Brown, S. M.; Bubert, C.;
Crosby, J.; Fitzjohn, S.; Muxworthy, J. P.; Williams,
J. M. Tetrahedron Lett 2001, 42, 4041–4043.
[25] Huang, X.; Ying, J. Y. Chem Commun 2007, 1825–
1827.
[26] Wu, X.; Li, X.; Zanotti-Gerosa, A.; Pettman, A.; Liu, J.;
Mills, A. J.; Xiao, J. Chem Eur J 2008, 14, 2209–2222.
[27] Li, L.; Wu, J.; Wang, F.; Liao, J.; Zhang, H.; Lian, C.;
Zhu, J.; Deng, J. Green Chem 2007, 9, 23–25.
[28] Cortez, N. A.; Aguirre, G.; Parra-Hake, M.;
Somanathan, R. Tetrahedron Lett 2007, 48, 4335–
4338.
[29] Canivet, J.; Suss-Fink, G. Green Chem 2007, 9, 391–
397.
[30] Xu, Z.; Mao, J.; Zhang, Y.; Guo, J.; Zhu, J. Catal Com-
mun 2008, 9, 618–623.
[31] Kawasaki, I.; Tsunoda, K.; Tsuji, T.; Yamaguchi, T.;
Shibuta, H.; Uchida, N.; Yamashitaab, M.; Ohta, S.
Chem Commun 2005, 2134–2136.
[32] Rhyoo, H. Y.; Park, H.-J.; Suh, W. H.; Chung, Y. K.
Tetrahedron Lett 2002, 43, 269–272.
[33] Rhyoo, H. Y.; Park, H. J.; Chung, Y. K. Chem Com-
mun 2001, 2064–2065.
REFERENCES
[1] Wu, X.; Xiao, J. Chem Commun 2007, 2449–2466.
[2] Gladiali, S.; Alberico, E. Chem Soc Rev 2006, 35, 226–
236.
[3] Blaser, H. U.; Malan, C.; Pugin, B.; Spindler, F.;
Steiner, H.; Studer, M. Adv Synth Catal 2003, 345,
103–151.
[4] Everaere, K.; Mortreux, A.; Carpentier, J.-F. Adv
Synth Catal 2003, 345, 67–77.
[5] Saluzzo, C.; Lemaire, M. Adv Synth Catal 2002, 344,
915–928.
[34] Rhyoo, H. Y.; Yoon, Y.-A.; Park, H.-J.; Chung, Y. K.
Tetrahedron Lett 2001, 42, 5045–5048.
[35] Faller, J. W.; Lavoie, A. R. Organometallics 2001, 20,
5245–5247.
Heteroatom Chemistry DOI 10.1002/hc