Human Intestinal Carboxylesterase Inhibitors
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 12 3751
(20) Wadkins, R. M.; Hyatt, J. L.; Wei, X.; Yoon, K. J.; Wierdl, M.;
Edwards, C. C.; Morton, C. L.; Obenauer, J. C.; Damodaran, K.;
Beroza, P.; Danks, M. K.; Potter, P. M. Identification and
characterization of novel benzil (diphenylethane-1,2-dione) ana-
logues as inhibitors of mammalian carboxylesterases. J. Med. Chem.
2005, 48, 2905–2915.
(21) Wadkins, R. M.; Hyatt, J. L.; Yoon, K. J.; Morton, C. L.; Lee, R. E.;
Damodaran, K.; Beroza, P.; Danks, M. K.; Potter, P. M. Identification
of novel selective human intestinal carboxylesterase inhibitors for the
amelioration of irinotecan-induced diarrhea: Synthesis, quantitative
structure-activity relationship analysis, and biological activity. Mol.
Pharmacol. 2004, 65, 1336–1343.
(22) Bencharit, S.; Morton, C. L.; Hyatt, J. L.; Kuhn, P.; Danks, M. K.;
Potter, P. M.; Redinbo, M. R. Crystal structure of human carboxy-
lesterase 1 complexed with the Alzheimer’s drug tacrine. From
binding promiscuity to selective inhibition. Chem. Biol. 2003, 10,
341–349.
(23) Webb, J. L. Enzyme and Metabolic Inhibitors, Volume 1. General
Principles of Inhibition; Academic Press Inc.: New York, 1963.
(24) Hyatt, J. L.; Moak, T.; Hatfield, J. M.; Tsurkan, L.; Edwards, C. C.;
Wierdl, M.; Danks, M. K.; Wadkins, R. M.; Potter, P. M. Selective
inhibition of carboxylesterases by isatins, indole-2,3-diones. J. Med.
Chem. 2007, 50, 1876–1885.
(25) Potter, P. M.; Wadkins, R. M. Carboxylesterasessdetoxifying enzymes
and targets for drug therapy. Curr. Med. Chem. 2006, 13, 1045–1054.
(26) Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nystrom, A.;
Pettersen, J.; Bergman, B. Experimental design and optimization.
Chemom. Intell. Lab. Syst. 1998, 42, 3–40.
(27) Hicks, L. D.; Hyatt, J. L.; Moak, T.; Edwards, C. C.; Tsurkan, L.;
Wierdl, M.; Ferreira, A. M.; Wadkins, R. M.; Potter, P. M. Analysis
of the inhibition of mammalian carboxylesterases by novel fluo-
robenzoins and fluorobenzils. Bioorg. Med. Chem. 2007, 15, 3801–
3817.
(28) Hyatt, J. L.; Stacy, V.; Wadkins, R. M.; Yoon, K. J.; Wierdl, M.;
Edwards, C. C.; Zeller, M.; Hunter, A. D.; Danks, M. K.; Crundwell,
G.; Potter, P. M. Inhibition of carboxylesterases by benzil (diphe-
nylethane-1,2-dione) and heterocyclic analogues is dependent upon
the aromaticity of the ring and the flexibility of the dione moiety.
J. Med. Chem. 2005, 48, 5543–5550.
(29) Wadkins, R. M.; Hyatt, J. L.; Edwards, C. C.; Tsurkan, L.; Redinbo,
M. R.; Wheelock, C. E.; Jones, P. D.; Hammock, B. D.; Potter,
P. M. Analysis of mammalian carboxylesterase inhibition by
trifluoromethylketone-containing compounds. Mol. Pharmacol. 2007,
71, 713–723.
(30) Wadkins, R. M.; Morton, C. L.; Weeks, J. K.; Oliver, L.; Wierdl,
M.; Danks, M. K.; Potter, P. M. Structural constraints affect the
metabolism of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbony-
loxycamptothecin (CPT-11) by carboxylesterases. Mol. Pharmacol.
2001, 60, 355–362.
(31) Brandstetter, H.; Turk, D.; Hoeffken, H. W.; Grosse, D.; Sturzebecher,
J.; Martin, P. D.; Edwards, B. F.; Bode, W. Refined 2.3 A X-ray crystal
structure of bovine thrombin complexes formed with the benzamidine
and arginine-based thrombin inhibitors NAPAP, 4-TAPAP and MQPA.
A starting point for improving antithrombotics. J. Mol. Biol. 1992,
226, 1085–1099.
(32) Sturzebecher, J.; Hauptmann, J.; Steinmetzer, T., Thrombin. In
Proteinase and Peptidase Inhibition: Recent Potential Targets for Drug
DeVelopment; Smith, H. J.; Simmons, C., Eds.; Taylor & Francis:
London, 2002; pp 185-201.
(33) Okamoto, S.; Kinjo, K.; Hijikata, A.; Kikumoto, R.; Tamao, Y.;
Ohkubo, K.; Tonomura, S. Thrombin inhibitors. 1. Ester derivatives
of N-alpha-(arylsulfonyl)-L-arginine. J. Med. Chem. 1980, 23, 827–
830.
(34) Sturzebecher, J.; Markwardt, F.; Voigt, B.; Wagner, G.; Walsmann,
P. Cyclic amides of N-alpha-arylsulfonylaminoacylated 4-amidinophe-
nylalaninestight binding inhibitors of thrombin. Thromb. Res. 1983,
29, 635–642.
(35) Morton, C. L.; Potter, P. M. Comparison of Escherichia coli,
Saccharomyces cereVisiae, Pichia pastoris, Spodoptera frugiperda and
COS7 cells for recombinant gene expression: application to a rabbit
liver carboxylesterase. Mol. Biotechnol. 2000, 16, 193–202.
(36) Hyatt, J. L.; Wadkins, R. M.; Tsurkan, L.; Hicks, L. D.; Hatfield,
M. J.; Edwards, C. C.; Ii, C. R.; Cantalupo, S. A.; Crundwell, G.;
Danks, M. K.; Guy, R. K.; Potter, P. M. Planarity and constraint
of the carbonyl groups in 1,2-diones are determinants for selective
inhibition of human carboxylesterase 1. J. Med. Chem. 2007, 50,
5727–5734.
grant CA108775, a Cancer Center core grant CA21765, a NSF
EPSCoR grant EPS-0556308, and by the American Lebanese
Syrian Associated Charities.
Supporting Information Available: Physical and spectral
parameters for the sulfonamide compounds synthesized. This
material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Cashman, J.; Perroti, B.; Berkman, C.; Lin, J. Pharmacokinetics and
molecular detoxification. EnViron. Health Perspect. 1996, 104, 23–
40.
(2) Kunimoto, T.; Nitta, K.; Tanaka, T.; Uehara, N.; Baba, H.; Takeuchi,
M.; Yokokura, T.; Sawada, S.; Miyasaka, T.; Mutai, M. Antitumor
activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-
camptothecin, a novel water-soluble derivative of camptothecin, against
murine tumors. Cancer Res. 1987, 47, 5944–5947.
(3) Pindel, E. V.; Kedishvili, N. Y.; Abraham, T. L.; Brzezinski, M. R.;
Zhang, J.; Dean, R. A.; Bosron, W. F. Purification and cloning of a
broad substrate specificity human liver carboxylesterase that catalyzes
the hydrolysis of cocaine and heroin. J. Biol. Chem. 1997, 272, 14769–
14775.
(4) Bencharit, S.; Morton, C. L.; Xue, Y.; Potter, P. M.; Redinbo, M. R.
Structural basis of heroin and cocaine metabolism by a promiscuous
human drug-processing enzyme. Nat. Struct. Biol. 2003, 10, 349–356.
(5) Kamendulis, L. M.; Brzezinski, M. R.; Pindel, E. V.; Bosron, W. F.;
Dean, R. A. Metabolism of cocaine and heroin is catalyzed by the
same human liver carboxylesterases. J. Pharmacol. Exp. Ther. 1996,
279, 713–717.
(6) Brzezinski, M. R.; Spink, B. J.; Dean, R. A.; Berkman, C. E.; Cashman,
J. R.; Bosron, W. F. Human liver carboxylesterase hCE-1: binding
specificity for cocaine, heroin, and their metabolites and analogs. Drug
Metab. Dispos. 1997, 25, 1089–96.
(7) Shi, D.; Yang, J.; Yang, D.; LeCluyse, E. L.; Black, C.; You, L.;
Akhlaghi, F.; Yan, B. Anti-influenza prodrug oseltamivir is activated
by carboxylesterase human carboxylesterase 1, and the activation is
inhibited by antiplatelet agent clopidogrel. J. Pharmacol. Exp. Ther.
2006, 319, 1477–84.
(8) Zhang, J.; Burnell, J. C.; Dumaual, N.; Bosron, W. F. Binding and
hydrolysis of meperidine by human liver carboxylesterase hCE-1.
J. Pharmacol. Exp. Ther. 1999, 290, 314–318.
(9) Alexson, S. E.; Diczfalusy, M.; Halldin, M.; Swedmark, S. Involvement
of liver carboxylesterases in the in vitro metabolism of lidocaine. Drug
Metab. Dispos. 2002, 30, 643–647.
(10) Tsuji, T.; Kaneda, N.; Kado, K.; Yokokura, T.; Yoshimoto, T.; Tsuru,
D. CPT-11 converting enzyme from rat serum: purification and some
properties. J. Pharmacobiodynamics 1991, 14, 341–349.
(11) Potter, P. M.; Pawlik, C. A.; Morton, C. L.; Naeve, C. W.; Danks,
M. K. Isolation and partial characterization of a cDNA encoding a
rabbit liver carboxylesterase that activates the prodrug Irinotecan (CPT-
11). Cancer Res. 1998, 52, 2646–2651.
(12) Humerickhouse, R.; Lohrbach, K.; Li, L.; Bosron, W.; Dolan, M.
Characterization of CPT-11 hydrolysis by human liver carboxylesterase
isoforms hCE-1 and hCE-2. Cancer Res. 2000, 60, 1189–1192.
(13) Khanna, R.; Morton, C. L.; Danks, M. K.; Potter, P. M. Proficient
metabolism of CPT-11 by a human intestinal carboxylesterase. Cancer
Res. 2000, 60, 4725–4728.
(14) Wierdl, M.; Tsurkan, L.; Hyatt, J. L.; Hatfield, M. J.; Edwards, C. C.;
Danks, M. K.; Redinbo, M. R.; Potter, P. M. An improved human
carboxylesterase for use in enzyme/prodrug therapy with CPT-11.
Cancer Gene Ther. 2008, 15, 183–192.
(15) Tabata, T.; Katoh, M.; Tokudome, S.; Nakajima, M.; Yokoi, T.
Identification of the cytosolic carboxylesterase catalyzing the 5′-deoxy-
5-fluorocytidine formation from capecitabine in human liver. Drug
Metab. Dispos. 2004, 32, 1103–1110.
(16) Quinney, S. K.; Sanghani, S. P.; Davis, W. I.; Hurley, T. D.; Sun, Z.;
Murry, D. J.; Bosron, W. F. Hydrolysis of capecitabine to 5′-deoxy-
5-fluorocytidine by human carboxylesterases and inhibition by lop-
eramide. J. Pharmacol. Exp. Ther. 2005, 313, 1011–1016.
(17) Stampfli, H. F.; Quon, C. Y. Polymorphic metabolism of flestolol and
other ester containing compounds by a carboxylesterase in New
Zealand white rabbit blood and cornea. Res. Commun. Mol. Pathol.
Pharmacol. 1995, 88, 87–97.
(18) Morton, C. L.; Iacono, L.; Hyatt, J. L.; Taylor, K. R.; Cheshire, P. J.;
Houghton, P. J.; Danks, M. K.; Stewart, C. F.; Potter, P. M.
Metabolism and antitumor activity of CPT-11 in plasma esterase-
deficient mice. Cancer Chemother. Pharmacol. 2005, 56, 629–636.
(19) Beroza, P.; Damodaran, K.; Lum, R. T. Target-related affinity profiling:
Telik’s lead discovery technology. Curr. Top. Med. Chem. 2005, 5,
371–381.
(37) Guichard, S.; Morton, C. L.; Krull, E. J.; Stewart, C. F.; Danks,
M. K.; Potter, P. M. Conversion of the CPT-11 metabolite APC to
SN-38 by rabbit liver carboxylesterase. Clin. Cancer Res. 1998, 4,
3089–3094.
(38) Stewart, J. J. MOPAC: a semiempirical molecular orbital program.
J. Comput.-Aided Mol. Des. 1990, 4, 1–105.