5986 J . Org. Chem., Vol. 64, No. 16, 1999
Li et al.
7.66-7.68 (m, 5H, C6H5); 13C NMR δ 13.6 (CH3), 19.1 (CH2),
30.3, 30.6, 30.9 (CH2), 64.2, 64.4, 64.7 (OCH2), 116.1, 116.4
(dCH), 126.6, 126.7, 126.9, 127.1, 127.6, 127.7, 127.8, 128.0,
128.1, 128.5, 128.8, 128.9, 129.8, 130.3, 130.5, 130.8, 137.2
(C6H5), 146.0 (ClCd), 164.2 (CdO); MS m/z 240 (M+(37Cl)), 238
(M+(35Cl)), 183 (M+(37Cl) - C4H9), 181 (M+(35Cl) - C4H9), 167
(M+(37Cl) - OC4H9), 165 (M+(35Cl) - OC4H9), 139 (M+(37Cl) -
CO2C4H9), 137 (M+(35Cl) - CO2C4H9), 102 (M+ - Cl -
CO2C4H9). Anal. Calcd for C13H15ClO2: C, 65.41; H, 6.33.
Found: C, 65.25; H, 6.38.
Sch em e 2
Isop r op yl (Z)-3-Ch lor o-3-p h en yla cr yla te (3c).6 IR (film)
766, 853, 1373, 1448, 1492, 1618, 1722, 3062 cm-1; 1H NMR δ
1.25 (d, 6H, J ) 6 Hz, 2CH3), 5.14 (m, 1H, CH), 6.50 (s, 1H,
HCd), 7.36-7.43, 7.65-7.68 (m, 5H, C6H5); 13C NMR δ 21.9
(2CH3), 68.1 (O-C), 116.9 (dCH), 127.2, 128.6, 130.5, 137.5
(C6H5), 144.5 (ClCd), 163.5 (CdO); MS m/z 226 (M+(37Cl)), 224
(M+(35Cl)), 183 (M+(37Cl) - C3H7), 181 (M+(35Cl) - C3H7), 167
(M+(37Cl) - OC3H7), 165 (M+(35Cl) - OC3H7), 139 (M+(37Cl) -
CO2C3H7), 137 (M+(35Cl) - CO2C3H7), 102 (M+ - Cl -
CO2C3H7).
the chloro esters may be formed either by a reductive
elimination of Pd(0) from the monocarboalkoxylated
intermediate or by PdCl2 addition of acetylenes, followed
by carbonylation and alcoholysis. In fact, no carbonyla-
tion products of 4-octyne were detected in our experi-
ments,10 indicating that chloropalladation of acetylenes
might be faster than acylpalladation of acetylenes in the
less polar solvent. Therefore, our hypothesis is that the
cis-addition of acetylenes and PdCl2 may form the cis-
chloropalladation intermediate 4,14 followed by migratory
insertion of carbon monoxide and alcoholysis15 to afford
(Z)-3-chloroacrylate esters 3. CuCl2 then oxidizes the
palladium from intermediate 5 to regenerate the active
palladium species (Scheme 2).
sec-Bu tyl (Z)-3-Ch lor o-3-p h en yla cr yla te (3d ). IR (film)
1001, 1380, 1448, 1493, 1618, 1716, 2975 cm-1 1H NMR δ
;
0.93 (t, 3H, J ) 7.4 Hz, CH3), 1.27 (d, 3H, J ) 6.4 Hz, CH3),
1.62 (m, 2H, CH2), 4.98 (m, 1H, CH), 6.52 (s, 1H, HCd),
7.37-7.41, 7.66-7.68 (m, 5H, C6H5); 13C NMR δ 9.7 (CH3),
19.0, 19.5 (CH2), 28.8 (CH2), 72.7 (OCH), 117.0 (dCH),
127.2, 127.9, 128.6, 129.6, 129.7, 130.5, 137.4 (C6H5), 145.7
(ClCd), 163.9 (CdO); MS m/z 240 (M+(37Cl)), 238 (M+(35Cl)),
183 (M+(37Cl) - C4H9), 181 (M+(35Cl) - C4H9), 167 (M+(37Cl) -
OC4H9), 165 (M+(35Cl) - OC4H9), 140 (M+(37Cl) + 1 - CO2C4H9),
138 (M+(35Cl) + 1 - CO2C4H9), 102 (M+ - Cl - CO2C4H9). Anal.
Calcd for C13H15ClO2: C, 65.41; H, 6.33. Found: C, 65.50; H,
6.30.
In summary, we have developed a novel method for
the highly regio- and stereospecific synthesis of (Z)-3-
chloroacrylate esters under mild conditions. The method
may also provide a new, efficient route for the synthesis
of some sterically hindered alkyl esters.
ter t-Bu tyl (Z)-3-Ch lor o-3-p h en yla cr yla te (3e). IR (film)
764, 1035, 1390, 1450, 1616, 1722, 3060 cm-1; 1H NMR δ 1.52
(s, 9H, 3CH3), 6.45 (s, 1H, HCd), 7.37-7.40, 7.63-7.66 (m,
5H, C6H5); 13C NMR δ 27.7, 27.9, 28.2, 28.5, 28.6 (3CH3), 81.3
(O-C), 118.2 (dCH), 126.6, 126.7, 127.1, 127.6, 127.9, 128.1,
128.5, 129.3, 130.4, 137.5 (C6H5), 144.6 (ClCd), 163.5 (CdO);
MS m/z 238 (M+(35Cl)), 183 (M+(37Cl) - C4H9), 181 (M+(35Cl)
- C4H9), 167 (M+(37Cl) - OC4H9), 165 (M+(35Cl) - OC4H9), 139
Exp er im en ta l Section
1
Gen er a l In for m a tion . All H and 13C NMR spectra were
recorded at 400 MHz with CDCl3 as solvent. MS data were
obtained using HP 5973 GC-MS. TLC was performed using
commercially prepared 100-400 mesh silica gel plates (HF254),
and visualization was effected at 254 nm. CuCl2 was dried at
130 °C under HCl gas. All other reagents were used directly
as obtained commercially.
Gen er a l P r oced u r e for th e Ca r bon yla tion of Ter m in a l
Acetylen es. To a mixture of PdCl2 (0.056 mmol) and CuCl2
(3 mmol) in C6H6 (10 mL) were added alcohol 2 (0.6 mL) and
substrate 1 (1 mmol) under CO (1 atm). The reaction was
stirred at room temperature for 2 h. After filtration, the
benzene was removed by rotary evaporation to give crude 3.
Then the products 3 were purified by preparative TLC using
light petroleum-ethyl ether (10:1) as eluent on silica gel. All
products were obtained as colorless liquids.
(M+(37Cl) - CO2C4H9), 137 (M+(35Cl) - CO2C4H9), 102 (M+
-
Cl - CO2C4H9). Anal. Calcd for C13H15ClO2: C, 65.41; H, 6.33.
Found: C, 65.77; H, 6.47.
ter t-P en tyl (Z)-3-Ch lor o-3-p h en yla cr yla te (3f). IR (film)
766, 1068, 1452, 1490, 1616, 1722, 3062 cm-1; 1H NMR δ 0.91
(t, 3H, J ) 7.6 Hz, CH3), 1.49 (s, 3H, CH3), 1.82 (q, 2H, J )
7.6 Hz, CH2), 6.45 (s, 1H, HCd), 7.37-7.40, 7.63-7.66 (m, 5H,
C6H5); 13C NMR δ 8.2 (CH3), 25.1, 25.6, 26.0 (2CH3), 33.5 (CH2),
83.9 (O-C), 118.2 (dCH), 126.7, 126.9, 127.2, 127.9, 128.1,
128.5, 129.6, 129.9, 130.3, 137.5 (C6H5), 144.5 (ClCd), 163.5
(CdO); MS m/z 252 (M+(35Cl)), 183 (M+(37Cl) - C5H11), 181
(M+(35Cl) - C5H11), 167 (M+(37Cl) - OC5H11), 165 (M+(35Cl) -
OC5H11), 139 (M+(37Cl) - CO2C5H11), 137 (M+(35Cl) - CO2C5H11),
102 (M+ - Cl - CO2C5H11). Anal. Calcd for C14H17ClO2: C,
66.53; H, 6.78. Found: C, 66.56; H, 6.76.
Meth yl (Z)-3-Ch lor o-3-p h en yla cr yla te (3a ).6 IR (film)
768, 1439, 1620, 1730, 3062 cm-1; 1H NMR δ 3.79 (s, 3H, CH3),
6.53 (Z-isomer) (s, 1H, HCd), 7.38-7.42, 7.65-7.68 (m, 5H,
C6H5); 13C NMR δ 51.6, 52.5 (CH3), 116.0, 119.3 (dCH), 126.8,
127.0, 127.2, 127.5, 127.9, 128.1, 128.4, 128.6, 129.1, 129.5,
130.0, 130.3, 130.4, 130.7, 137.2 (C6H5), 146.5, 150.2
(ClCd), 164.6(CdO); MS m/z 198 (M+(37Cl)), 196 (M+(35Cl), 167
(M+(37Cl) - OCH3), 165 (M+(35Cl) - OCH3), 139 (M+(37Cl) -
CO2CH3), 137 (M+(35Cl) - CO2CH3), 102 (M+ - Cl - CO2CH3).
Bu tyl (Z)-3-Ch lor o-3-p h en yla cr yla te (3b). IR (film) 766,
Meth yl (Z)-3-Ch lor o-2-octen oa te (3g).6 IR (film) 650, 849,
1
1007, 1375, 1462, 1635, 1720, 2933 cm-1; H NMR δ 0.88 (t,
3H, J ) 7.2 Hz, CH3), 1.25 (m, 4H, 2CH2), 1.60 (m, 2H, CH2),
2.42 (t, 2H, J ) 7.2 Hz, CH2), 3.70 (s, 3H, CH3), 6.00 (s, 1H,
HCd); 13C NMR δ 13.8 (CH3), 22.3 (CH2), 26.8 (CH2), 30.6
(CH2), 41.2 (CH2), 51.3 (OCH3), 115.7 (dCH), 151.0 (ClCd),
164.4 (CdO); MS m/z 190 (M+(35Cl)), 161 (M+(37Cl) - OCH3),
159 (M+(35Cl) - OCH3), 155 (M+ - Cl), 95 (M+ - 1 - Cl -
CO2CH3).
Bu tyl (Z)-3-Ch lor o-2-octen oa te (3h ). IR (film) 660, 852,
1
1385, 1450, 1491, 1618, 1724, 3062 cm-1; H NMR δ 0.94 (t,
1022, 1383, 1462, 1639, 1730, 2960 cm-1 1H NMR δ 0.86-
;
3H, J ) 7.2 Hz, CH3), 1.41 (m, 2H, CH2), 1.66 (m, 2H, CH2),
4.20 (t, 2H, J ) 6.8 Hz, CH2), 6.53 (s, 1H, HCd), 7.37-7.41,
0.94 (m, 6H, 2CH3), 1.26-1.39 (m, 8H, 4CH2), 1.61 (m, 2H,
CH2), 2.41 (t, 2H, J ) 7.6 Hz, CH2), 4.13 (t, 2H, J ) 6.8 Hz,
CH2), 5.98 (s, 1H, HCd); 13C NMR δ 13.6 (CH3), 13.7 (CH3),
19.1 (CH2), 22.2 (CH2), 26.8 (CH2), 30.6 (2CH2), 41.1 (CH2),
64.1 (OCH2), 116.1 (dCH), 150.4 (ClCd), 164.0 (CdO); MS
m/z 233 (M+(35Cl) + 1), 197 (M+ - Cl), 179 (M+(37Cl) + 2 -
C4H9), 177 (M+(35Cl) + 2 - C4H9), 161 (M+(37Cl) - OC4H9), 159
(14) (a) Kaneda, K.; Uchiyama, T.; Fujiwara, Y.; Imanaka, T.;
Teranishi, S. J . Org. Chem. 1979, 44, 55. (b) Ba¨ckvall, J , E.; Mcnilsson,
Y. I. M.; Gatti, R. G. Organometallics 1995, 14, 4242.
(15) Negishi, E.; Coperet, C.; Ma, S.; Liou, S. Y.; Liu, F. Chem. Rev.
1996, 96, 365.