3702
S. R. Cheruku et al. / Tetrahedron Letters 44 (2003) 3701–3703
Scheme 2.
Table 1. Synthesis of 2H-pyrroles (7a–h) from pyrrolidines (6a–h)
Pyrrolidine
R1
R2
R3
R4
2H-Pyrrole
Yield (%)
Mp (°C)a
6a
6b
6c
6d
6e
6f
C6H5
C6H5
C6H5
C6H5
C6H5
C6H5
C6H5
4-CH3-C6H4
4-Pyridyl
C6H5
C6H5
4-CH3-C6H4
CH3
CH3
7a
7b
7c
7d
7e
7f
81
72
67
71
69
74
55
78
58–60 (59–61)4b
97–99
-(CH2)4-
-(CH2)5-
CH3
109–111 (112–114)4b
85–87 (275)12
111–113 (115)5c
89–91 (93–94)13
82–84 (270)12
91–93 (285)12
CH3
CH3
CH3
CH3
CH3
C6H5
CH3
CH3
CH3
CH3
4-Pyridyl
4-CH3-C6H4
4-CH3-C6H4
6g
6h
7g
7h
a Literature values in parentheses for known 2H-pyrroles or the corresponding hydrochloride salts.
peratures. Interestingly, few reports11a–e describe dehy-
drogenation of pyrrolidines to pyrrolines or 1H-
pyrroles; to our knowledge the direct conversion of
pyrrolidines to 2H-pyrroles has yet to be documented.
2. (a) Belloir, P. F.; Laurent, A.; Mison, P.; Lesniak, S.;
Bartnik, R. Synthesis 1986, 8, 683–686; (b) Lui, K. H.;
Sammes, M. P. J. Chem. Soc., Perkin Trans. 1 1990,
457–468; (c) Texier, F.; Mazari, M.; Yebdri, O.; Tonnard,
F.; Carrie, R. Tetrahedron 1990, 46, 3515–3526; (d)
Berree, F.; Marchand, E.; Morel, G. Tetrahedron Lett.
1992, 33, 6155–6158; (e) Bohm, T.; Weber, A.; Sauer, J.
Tetrahedron 1999, 55, 9535–9558.
3. (a) Fuks, R.; Viehe, H. G. Tetrahedron 1969, 25, 5721–
5732; (b) Koch, J.; Robert, J. F.; Panouse, J. J. C.R.
Acad. Sci. Paris 1978, 286, 95–98; (c) Konakahara, T.;
Watanabe, A.; Maehara, K.; Nagata, M.; Hojahmat, M.
Heterocycles 1993, 35, 1171–1184.
4. (a) Gilgen, P.; Heimgartner, H.; Schmidt, H. Heterocycles
1977, 6, 143–212; (b) Laurent, A.; Mison, P.; Nafti, A.;
Pellissier, N. Tetrahedron Lett. 1978, 1, 4511–4514; (c)
Aeppli, L.; Bernauer, K.; Schneider, F.; Strub, K.; Ober-
hansli, W. E.; Pfoertner, K. H. Helv. Chim. Acta 1980,
63, 630–644; (d) Pfoertner, K. H.; Zell, R. Helv. Chim.
Acta 1980, 63, 645–651; (e) Huang, W. S.; Zhang, Y. X.;
Yuan, C. J. Chem. Soc., Perkin Trans. 1 1996, 15, 1893–
1896.
Typical procedure: To a stirred solution of pyrrolidine
6a (5.0 mmol) in dioxane (20 ml) at room temperature
was added DDQ (11.0 mmol). The reaction mixture
immediately turned deep green, and it was allowed to
stir until the starting material was consumed (16 h in
this case). The solvent was removed in vacuo, and dry
benzene (15 ml) was added to the resulting residue and
the insoluble hydroquinone was filtered. It was rinsed
with benzene (2×10 ml) and the combined filtrates were
concentrated under reduced pressure to give a dark
brown oil. Crystallization of this crude material from
benzene:hexanes (2:1) afforded 2H-pyrrole 7a as a col-
orless solid.
In conclusion, a mild and direct method was developed
for the conversion of pyrrolidines to 2H-pyrroles, thus
expanding the utility of the reductive cyclization route.
5. (a) Bapat, J. B.; Black, D. St. C. Aust. J. Chem. 1968, 21,
2483–2495; (b) Bapat, J. B.; Black, D. St. C.; Newland,
G. Aust. J. Chem. 1974, 27, 1591–1595; (c) Pfoertner, K.
H.; Foricher, J. Helv. Chim. Acta 1980, 63, 658–663; (d)
Turner, M. J.; Luckenbach, L. A.; Turner, E. L. Synth.
Commun. 1986, 16, 1377–1385.
Acknowledgements
This work was supported in part by UNDP/World
Bank/WHO Special Programme for Research and
Training in Tropical Diseases (TDR ID No. 980211).
6. Marvel, C. S.; Coleman, L. E.; Scott, G. P. J. Org. Chem.
1955, 20, 1785–1792.
7. Ono, N.; Kamimura, A.; Miyake, H.; Hamamoto, I.;
Kaji, A. J. Org. Chem. 1985, 50, 3692–3698.
References
8. Moffet, R. B.; White, J. L. J. Org. Chem. 1952, 17,
407–413.
1. Sammes, M. P.; Katritzky, A. R. Advances in Hetero-
cyclic Chemistry; Academic Press, 1982; Vol. 32, pp.
233–283.
9. Sammes, M. P.; Chung, M. W. L.; Katritzky, A. R. J.
Chem. Soc., Perkin Trans. 1 1985, 1773–1779.
10. Fatiadi, A. J. Synthesis 1976, 65.