pubs.acs.org/joc
acyl-Gly dipeptidomimetics,6 signal transduction inhibi-
PTSA-ZnCl2: An Efficient Catalyst for the
Synthesis of 1,2,4-Oxadiazoles from Amidoximes and
Organic Nitriles
tors,7 or cell adhesion inhibitors.8
1,2,4-Oxadiazoles are most commonly synthesized from
amidoximes and carboxylic acid derivatives in two steps.
During the first step, the amidoxime prepared by the
addition of hydroxylamine to a nitrile compound is
O-acylated by an activated carboxylic acid derivative. The
heterocycle is subsequently formed by intramolecular cyclo-
dehydration.6-12 All of these approaches generally require
long reaction times. In an attempt to improve on these
procedures, microwave-assisted methods for this cyclization
have recently been reported.13 Yarovenko and co-workers
have reported a one-pot reaction of benzamidoxime with
organic nitriles such as acetonitrile and propionitrile to
produce the corresponding 5-alkyl-3-phenyl-1,2,4-oxadia-
zoles.14 Unfortunately, the reaction required drastic condi-
tions (heating to 180 °C in a sealed tube with excess of nitrile),
and the yields of cyclization products did not exceed
15-20%. This prompted us to study the feasibility of
synthesizing 1,2,4-oxadiazoles from amidoximes and org-
anic nitriles under mild conditions.
John Kallikat Augustine,* Vani Akabote, Shrivatsa
Ganapati Hegde, and Padma Alagarsamy
Syngene International Ltd., Biocon Park, Plot Nos. 2 & 3,
Bommasandra IV Phase, Jigani Link Road, Bangalore
560 099, India
*To whom correspondence should be addressed. Tel:
+91 80 2808 3131. Fax: +91 80 2808 3150.
Received April 21, 2009
PTSA-ZnCl2 has been proved to be an efficient and mild
catalyst for the synthesis of 3,5-disubstituted-1,2,4-oxa-
diazoles from amidoximes and organic nitriles.
The 1,2,4-oxadiazole heterocycle has been utilized as a
stable ester or amide bioisostere1 and is found in several
drugs and drug leads2 including the potent S1P1 agonist (1),3
the metabotropic glutamate subtype 5 (mGlu5) receptor (2),4
and muscarinic receptor (3)5 for the treatment of Alzheimer’s
disease. Several papers have reported the use of 1,2,4-ox-
adiazole in peptide mimetics, including the design of amino
After a series of trials with various acid catalysts, we were
delighted to find that PTSA could be used in combination
with ZnCl2 for the smooth preparation of 1,2,4-oxadiazoles
from amidoximes with organic nitriles under mild condi-
tions. Herein, we report our results on the highly effective
p-toluenesulfonic acid mediated zinc chloride catalyzed
synthesis of 1,2,4-oxadiazoles from amidoximes and organic
nitriles.
In initial studies, we used benzamidoxime 1a (1 equiv) and
benzonitrile (1 equiv) to test the feasibility of employing
PTSA/ZnCl2 as a catalyst for the preparation of 1,2,4-
oxadiazoles form amidoximes and organic nitriles. The
(1) (a) Diana, G. D.; Volkots, D. L.; Nitz, T. J.; Bailey, T. R.; Long, M.
A.; Vescio, N.; Aldous, S.; Pevear, D. C.; Dutko, F. J. J. Med. Chem. 1994,
37, 2421–2436. (b) Borg, S.; Vollinga, R. C.; Labarre, M.; Payza, K.;
Terenius, L.; Luthman, K. J. Med. Chem. 1999, 42, 4331–4342.
(2) Zhang, H. Z.; Kasibhatla, S.; Kuemmerle, J.; Kemnitzer, W.; Ollis-
Mason, K.; Qiu, L.; Crogan-Grundy, C.; Tseng, B.; Drewe, J.; Cai, S. X. J.
Med. Chem. 2005, 48, 5215–5223.
(3) Li, Z.; Chen, W.; Hale, J. J.; Lynch, C. L.; Mills, S. G.; Hajdu, R.;
Keohane, C. A.; Rosenbach, M. J.; Milligan, J. A.; Shei, G. J.; Chrebet, G.;
Parent, S. A.; Bergstrom, J.; Card, D.; Forrest, M.; Quackenbush, E. J.;
Wickham, L. A.; Vargas, H.; Evans, R. M.; Rosen, H.; Mandala, S. J. Med.
Chem. 2005, 48, 6169–6173.
(9) (a) Deegan, T. L.; Nitz, T. J.; Cebzanov, D.; Pufko, D. E.; Porco, J. A.
Jr. Bioorg. Med. Chem. Lett. 1999, 9, 209–212. (b) Poulain, R. F.; Tartar, A.
ꢀ
(4) Roppe, J.; Smith, N. D.; Huang, D.; Tehrani, L.; Wang, B.;
Anderson, J.; Brodkin, J.; Chung, J.; Jiang, X.; King, C.; Munoz, B.; Varney,
M. A.; Prasit, P.; Cosford, N. D. P. J. Med. Chem. 2004, 47, 4645–4648.
(5) Street, L. J.; Baker, R.; Book, T.; Kneen, C. O.; MacLeod, A. M.;
Merchant, K. J.; Showell, G. A.; Saunders, J.; Herbert, R. H.; Freedman, S.
B.; Harley, E. A. J. Med. Chem. 1990, 33, 2690–2697.
L.; Deprez, B. P. Tetrahedron Lett. 2001, 42, 1495–1498.
(10) Rudolph, J.; Theis, H.; Hanke, R.; Endermann, R.; Johannsen, L.;
Geschke, F.-U. J. Med. Chem. 2001, 44, 619–626.
(11) Bedford, C. D.; Howd, R. A.; Dailey, O. D.; Miller, A.; Nolen, H.
W.; Kenley, R. A.; Kern, J. R.; Winterle, J. S. J. Med. Chem. 1986, 29, 2174–
2183.
(6) Borg, S.; Estenne-Bouhtou, G.; Luthman, K.; Csoeregh, I.;
Hesselink, W.; Hacksell, U. J. Org. Chem. 1995, 60, 3112–3120.
(7) Buchanan, J. L.; Vu, C. B.; Merry, T. J.; Corpuz, E. G.; Pradeepan, S.
G.; Mani, U. N.; Yang, M.; Plake, H. R.; Varkhedkar, V. M.; Lynch, B. A.;
MacNeil, I. A.; Loiacono, K. A.; Tiong, C. L.; Holt, D. A. Bioorg. Med.
Chem. Lett. 1999, 9, 2359–2364.
(12) (a) Rice, K.; Nuss, J. M. Bioorg. Med. Chem. Lett. 2001, 11, 753–755.
(b) Gangloff, A. R.; Litvak, J.; Shelton, E. J.; Sperandio, D.; Wang, V. R.;
Rice, K. D. Tetrahedron Lett. 2001, 42, 1441–1443.
(13) (a) Wang, Y.; Miller, R. L.; Sauer, D. R.; Djuric, S. W. Org. Lett.
2005, 7, 925–928. (b) Adib, M.; Jahromi, A. H.; Tavoosi, N.; Mahdavi, M.;
Bijanzadeh, H. R. Tetrahedron Lett. 2006, 47, 2965–2967.
(14) Yarovenko, V. N.; Zavarzin, I. V.; Krayushkin, M. M. Russ. Chem.
Bull. 1986, 35, 1106.
(8) Durette, P. L.; Hagmann, W. K.; Kopka, I. E.; MacCoss, M. Merck &
Co., WO 00/71572 A1, 30 Nov 2000.
5640 J. Org. Chem. 2009, 74, 5640–5643
Published on Web 06/04/2009
DOI: 10.1021/jo900818h
r
2009 American Chemical Society