7,14-Bis-(4-chlorophenyl)-11,11-dimethyl-1,4,10,12-tetraoxa-
dispiro[4.2.5.2]pentadecane-9,13-dione (3a)
˚
O6–C7, O6–C25 are restrained to 1.43 A with an estimated standard
deviation 0.02.
White solid, mp: 270–271 ◦C.
1H NMR (400 MHz) (d, ppm): 7.46 (d, J = 8.0 Hz, 4H, ArH),
7.13 (d, J = 8.0 Hz, 4H, ArH), 3.99-3.96 (m, 4H, CH2), 3.86-3.81
(m, 2H, CH2), 2.76 (t, J = 13.4 Hz, 2H, CH), 1.87-1.83 (m, 2H,
CH2), 0.56 (s, 6H, CH3). 13C NMR (100 MHz) (d, ppm): 168.5,
164.3, 137.2, 133.2, 130.4, 129.2, 107.0, 105.9, 64.3, 60.2, 47.6,
35.5, 28.0. IR (KBr, n, cm-1): 3049, 2983, 1759, 1731, 1599, 1518,
1462, 1403, 1388, 1346, 1286, 1214, 1156, 1101, 1025, 968, 891,
769. Anal. calcd. for C25H24Cl2O6, C, 61.11; H, 4.92; found C,
61.09; H, 4.84.
Acknowledgements
We are grateful for financial support from the National Science
Foundation of China (Nos. 20672090 and 20810102050), Natural
Science Foundation of the Jiangsu Province (No. BK2006033),
and Six Kinds of Professional Elite Foundation of the Jiangsu
Province (No. 06-A-039).
References
1 (a) New Avenues to Efficient Chemical Synthesis. Emerging Technolo-
gies, Eds.: P. H. Seeberger, T. Blume, Springer, Heidelberg, 2007
(Ernst Schering Foundation Symposium Proceedings 2006-3); (b) K. C.
Nicolaou, E. W. Yue, T. Oshima, in The New Chemistry, Ed.: N. Hall,
Cambridge University Press, Cambridge, 2001, pp. 168–198; (c) L. F.
Tietze, F. Hautner, in Stimulating Concepts in Organic Chemistry, Eds:
F. Vgtle, J. F. Stoddart, M. Shibashaki, Wiley-VCH, Weinheim, 2000,
pp. 38–64; (d) D. B. Ramachary, M. Kishor and G. Babul Reddy,
Org. Biomol. Chem., 2006, 4, 1641–1646; (e) D. B. Ramachary and
G. Babul Reddy, Org. Biomol. Chem., 2006, 4, 4463–4468; (f) D. B.
Ramachary and M. Kishor, J. Org. Chem., 2007, 72, 5056–5068;
(g) D. B. Ramachary, K. Ramakumar and V. V. Narayana, J. Org.
Chem., 2007, 72, 1458–1463; (h) D. B. Ramachary and M. Kishor,
Org. Biomol. Chem., 2008, 6, 4176–4187; (i) D. B. Ramachary,
Y. V. Reddy and M. Kishor, Org. Biomol. Chem., 2008, 6, 4188–
4197.
2 (a) H. Hagiwara, S. Endou, M. Fukushima, T. Hoshi and T. Suzuki,
Org. Lett., 2004, 6, 1115–1118; (b) M. Fukushima, A. Morii, T.
Hoshi, T. Suzuki and H. Hagiwara, Tetrahedron, 2007, 63, 7154–7164;
(c) M. Amedjkouh and M. Brandberg, Chem. Commun., 2008, 3043–
3045.
3 (a) L. F. Tietze and U. Beifuss, Angew. Chem. Int. Ed. Engl., 1993, 32,
131–163; (b) L. F. Tietze, T. H. Evers and E. Topken, Angew. Chem.
Int. Ed., 2001, 40, 903–905; (c) S. Ikeda, Angew. Chem. Int. Ed., 2003,
42, 5120–5122; (d) R. J. Linderman, S. Binet and S. R. Petrich, J. Org.
Chem., 1999, 64, 336–337; (e) P. Satymaheshwar, S. Jayakumar and J. J.
Tepe, Org. Lett., 2002, 4, 3533–3535.
4 D. B. Ramachary, N. S. Chowdari and C. F. Barbas III, Angew. Chem.
Int. Ed., 2003, 42, 4233–4237.
5 F. L. Muller, T. Constantieux and J. Rodriguez, J. Am. Chem. Soc.,
2005, 127, 17176–17177.
6 (a) A. N. Meldrum, J. Chem. Soc., 1908, 93, 598–601; (b) D. Davidson
and S. A. Bernhard, J. Am. Chem. Soc., 1948, 70, 3426–3428.
7 H. McNab, Chem. Soc. Rev., 1978, 7, 345–358.
8 (a) D. R. Zitsane, I. T. Ravinya, I. A. Riikure, Z. F. Tetere, E. Y.
Gudrinietse and U. O. Kalei, Russ. J. Org. Chem., 1999, 35, 1457–
1460; (b) D. R. Zitsane, I. T. Ravinya, I. A. Riikure, Z. F. Tetere,
E. Y. Gudrinietse and U. O. Kalei, Russ. J. Org. Chem., 2000, 36, 496–
501; (c) I. Bonnard, M. Rolland, C. Francisco and B. Banaigs, Lett.
Pept. Sci., 1997, 4, 289–292; (d) S. M. Chande and R. R. Khanwelkar,
Tetrahedron Lett., 2005, 46, 7787–7792; (e) A. S. Ivanov, Chem. Soc.
Rev., 2008, 37, 789–811.
2h. The single-crystal growth was carried out in ethanol
at room temperature. Crystal data for C25H22O9, M = 466.43,
˚
monoclinic, space group P2(1)/c, a = 6.8061(8) A, b = 22.230(3)
3
˚
˚
˚
A, c = 14.9656(16) A, V = 2234.9(4) A , Z = 4, T = 298(2) K, m =
0.106 mm-1, 10899 reflections measured, 3836 unique reflections,
R = 0.0943, Rw = 0.1917. In the 1,3-dioxane ring, atoms C7, C8, C10,
and C11 are disordered over two positions. During the refinement
process the disordered atoms C7 and C8 were both refined with
occupancies of 0.58(2) and 0.42(2), respectively, and atoms C10
and C11 were both refined with occupancies of 0.56(2) and 0.44(2),
respectively. In the cyclohexanone ring, atoms O3 and O4 are
disordered over two positions, During the refinement process the
disordered atom O3 was refined with occupancies of 0.502(4) and
0.498(2) whereas atom O4 was refined with occupancies of 0.414(4)
and 0.586(2).
3g. The single-crystal growth was carried out in ethanol at
room temperature. Crystal data for C25H24F2O6, M = 458.44,
¯
˚
˚
triclinic, space group P1, a = 8.146(4) A, b = 10.714(5) A,
3
˚
˚
c = 13.580(7) A, V = 1104.6(9) A , Z = 2, T = 298(2) K,
m = 0.109 mm-1, 5811 reflections measured, 3845 unique reflec-
tions, R = 0.0535, Rw = 0.1330.
4b. The single-crystal growth was carried out in ethanol at
room temperature. Crystal data for C26H26Br2O6, M = 594.29,
¯
˚
˚
triclinic, space group P1, a = 7.356(3) A, b = 12.590(5) A,
3
˚
˚
c = 14.852(6) A, V = 1267.8(8) A , Z = 2, T = 193(2) K,
m = 3.236 mm-1, 6454 reflections measured, 4330 unique re-
flections, R = 0.0728, Rw = 0.1245. In the bromophenyl ring
(C18–C23), atom Br2 was disordered over two positions. During
the refinement process the disordered atom Br2 was refined with
occupancies of 0.51(4) and 0.49(4). In the 1,3-dioxolane ring,
atoms C25 and C26 are disordered over two positions. During
the refinement process the disordered atoms C25 and C26 were
refined with occupancies of 0.320(18) and 0.680(18), 0.320(18) and
0.680(18), respectively. During refinement, atoms C25 and C25¢ are
constrained to have the same x, y and z parameters and anisotropic
9 (a) D. B. Ramachary and C. F. Barbas III, Chem. Eur. J., 2004, 10,
5323–5231; (b) D. B. Ramachary and C. F. Barbas, III, Org. Lett.,
2005, 7, 1577–1580; (c) E. E. Shults, E. A. Semenova, A. A. Johnson,
S. P. Bondarenko, I. Y. Bagryanskaya, Y. V. Gatilov, G. A. Tolstikov
and Y. Pommier, Bioorg. Med. Chem. Lett., 2007, 17, 1362–1368; (d) S.
Lu and H. Chen, Huaxi Yaoxue Zazhi, 1995, 10, 29–31; (e) Q. Zhong,
J. Shao and C. Liu, Youji Huaxue, 1988, 8, 466–469.
displacement parameters. All of the atoms of C, O, Br closer than
2
˚
˚
3.8 A are restrained with an s. u. value of 0.02 A to have the
same Uij components. If (according to the connectivity table,
i.e. ignoring attached hydrogens) one or both of the two atoms
involved is terminal (or not bonded at all), 0.04 is used instead as
0.02. The distance between C24, C26 and C24, C26¢ is restrained to
10 M. S. Chande and R. R. Khanwelkar, Tetrahedron Lett., 2005, 46,
7787–7792.
11 X.-S. Wang, M.-M. Zhang, Z.-S. Zeng, D.-Q. Shi, S.-J. Tu,
X.-Y. Wei and Z.-M. Zong, Tetrahedron Lett., 2005, 46, 7169–
7173.
12 (a) N. B. Ambhaikar, J. P. Snyder and D. C. Liotta, J. Am. Chem. Soc.,
2003, 125, 3690–3691; (b) M. Yamaguchi, in: Comprehensive Organic
Synthesis, (Ed.: B. M. Trost, I. Flem-ing), Pergamon Press, Oxford,
1991, Vol. 1, p. 325.
˚
2.54 A with an estimated standard deviation 0.02. The distances
˚
of C25–C26, C24–C25 and C25–C26¢ are restrained to 1.53 A with an
estimated standard deviation 0.02. The distances of O5–C7, O5–C24,
2200 | Org. Biomol. Chem., 2009, 7, 2195–2201
This journal is
The Royal Society of Chemistry 2009
©