H. Yang / Tetrahedron Letters 50 (2009) 3081–3083
3083
4. For recent examples, see: (a) Yang, Y.-Y.; Shou, W.-G.; Chen, Z.-B.; Hong, D.;
Wang, Y.-G. J. Org. Chem. 2008, 73, 3928–3930; (b) Gilmore, C. D.; Allan, K. M.;
Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 1558–1559; (c) Fischer, D.; Tomeba, H.;
Pahadi, N. K.; Patil, N. T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2007, 46, 4764–
4766; (d) Korivi, R. P.; Cheng, C.-H. Org. Lett. 2005, 7, 5179–5182.
5. Alvarez, M.; Joule, J. A. Sci. Synth. 2005, 15, 661–838.
6. (a) Bartmann, W.; Konz, E.; Rueger, W. Synthesis 1988, 9, 680–683; (b) Renger,
B.; Konz, E.; Rueger, W. Synthesis 1988, 9, 683–685; (c) Lerch, U.; Granzer, E.
Ger. Offen. DE 2314985, Mar 26, 1973; Chem. Abstr. 1975, 82, 16836.
7. For an excellent review on lithiation of halogenated aryl and heteroaryl
compounds, see: Schlosser, M. Eur. J. Org. Chem. 2001, 21, 3975–3984.
8. Palladium catalyzed cross-coupling reactions of 2, or its zinc derivative, with
iodobenzene were not successful.
OCH3
Ph
N
Ph
N
Ph
Cl
Cl
Cl
b
a
N
N
92%
N
73%
6a
9
8
N
N
Scheme 2. Synthesis of climiqualine 8 and its derivative. Reagents and conditions:
(a) NaH, imidazole, DMF, 60 °C; (b) Pd(OAc)2, XPHOS, K3PO4, 4-methoxyphenylbo-
ronic acid, THF, 85 °C.
9. The identity of the major product was confirmed by comparison with an
authentic sample of 4a.
10. Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818–
11819.
readily participated in Suzuki cross-coupling reaction with 4-
methoxyphenyl boronic acid to afford 9 in excellent yield (92%).
Similarly, this nucleophilic aromatic substitution/Suzuki cross-
coupling sequence could be applied to 3a–d, 6a–c, and 6e–h to
prepare a variety of other 1,3,4-trisubstituted isoquinolines.
In summary, we report a facile route to 1,3,4-trisubstituted iso-
quinolines from commercially available 1,3-dichloroisoquinoline 1.
A key step in the process is the direct lithiation of 1 at C-4, and the
reaction of the so-produced lithium species 2 with various electro-
philic reagents to produce diverse 4-substituted-1,3-dichloroiso-
quinolines.11 The 4-iodo compound 3e obtained in this way,
readily participated in Suzuki cross-coupling reactions to produce
various 4-aryl-1,3-dichloroisoquinolines,12 which could be trans-
formed into 4-aryl-isoquinoline derivatives bearing different sub-
stituents at C-1 and C-3.
11. A representative procedure—The preparation of compound 3e: To a solution of
1,3-dichloroisoquinoline 1 (5 g, 25.3 mmol) in THF (400 mL) at ꢀ78 °C was
added LDA (1 M in THF, 27.5 mL, 27.5 mmol) drop-wise. The resulting orange
solution was stirred at ꢀ78 °C for 15 min and quenched by cannulating to a
solution of iodine (12.7 g, 50 mmol) in THF (100 mL) at room temperature. The
reaction mixture was stirred at room temperature overnight and then
quenched with 10% aqueous Na2S2O3. The mixture was further diluted with
saturated aqueous NaHCO3. The organic layer was separated and the aqueous
layer was extracted with EtOAc (3ꢁ). The combined organic layers were dried
(MgSO4), filtered, and concentrated. The residue was dissolved in CH2Cl2,
filtered through a short pad of silica gel with 25% EtOAc in hexane as eluent to
give crude 3e as a pale yellow powder, which upon trituration from CH2Cl2/
hexane afforded 7.3 g of 3e (containing about 5% of 1, 85% yield,) as a off-white
powder. The product was further purified by recrystallization from 8/1 hexane/
CH2Cl2 to give an analytically pure sample. Mp: 129–131 °C; 1H NMR (CDCl3,
500 MHz): d 8.27 (d, J = 8.4 Hz, 1H), 8.13 (d, J = 8.5 Hz, 1H), 7.83 (t, J = 7.0 Hz,
1H), 7.72 (t, J = 7.2 Hz, 1H); 13C NMR (CDCl3, 125 MHz) d 151.4, 148.1, 141.2,
133.6, 132.5, 129.4, 127.1, 125.7, 97.2; IR (KBr film): 3431, 1609, 1535, 1478,
1432, 1349, 1297, 1248, 1183, 1150, 1128, 1035, 982, 897, 848, 769, 757, 713,
649, 616 cmꢀ1; HRMS calcd for C9H5Cl2IN [M+H]+: 323.8838. Found: 323.8835.
Anal. Calcd for C9H4Cl2IN: C, 33.37; H, 1.24; N, 4.32. Found: C, 33.61; H, 1.15; N,
4.27.
Acknowledgments
The author thanks Eric Sjogren for his inspiration and encour-
agement of this work, Joseph Muchowski for helpful discussions
and revision of this manuscript, and Kate Comstock for high-reso-
lution mass spectroscopy measurement.
12. Selected spectroscopic data—Compound 6a: Mp: 93–95 °C; 1H NMR (CDCl3,
400 MHz): d 8.40–8.35 (m, 1H), 7.70–7.64 (m, 2H), 7.57–7.46 (m, 4H), 7.36–
7.33 (m, 2H); 13C NMR (CDCl3, 75 MHz): d 149.9, 142.0, 138.9, 134.9, 131.9,
131.4, 130.1, 128.7, 128.5, 128.3, 126.5, 126.0, 125.8; IR (KBr film): 3430, 1653,
1615, 1560, 1547, 1502, 1436, 1384, 1322, 1265, 1146, 1117, 984, 861, 771,
;
703, 631, 620 cmꢀ1 MS calcd for C15H9Cl2N [M+H]+: 274. Found: 274.
References and notes
Compound 8: Mp: 166–169 °C; 1H NMR (CDCl3, 300 MHz): d 8.14 (t, J = 1 Hz,
1H), 8.11–8.07 (m, 1H), 7.72–7.51 (m, 7H), 7.40–7.37 (m, 2H), 7.32 (s, 1H); 13C
NMR (CDCl3, 75 MHz) d 147.1, 142.4, 139.9, 137.8, 135.0, 131.9, 131.8, 130.1,
128.8, 128.6, 128.4, 126.3, 124.5, 121.3, 120.3; IR (KBr film): 3138, 1614, 1552,
1503, 1480, 1414, 1333, 1259, 1235, 1172, 1144, 1103, 1074, 1035, 972, 863,
828, 764, 702, 684, 672, 660, 615 cmꢀ1; HRMS calcd for C18H13ClN3 [M+H]+:
306.0793. Found: 306.0790; Anal. Calcd for C18H12ClN3: C, 70.71; H, 3.96; N,
13.74. Found: C, 70.05; H, 3.87; N, 13.68. Compound 9: Mp: 170–172 °C; 1H
NMR (DMSO-d6, 300 MHz): d 8.33 (t, J = 1.1 Hz, 1H), 7.99 (d, J = 7.2 Hz, 1H),
7.87 (t, J = 1.2 Hz, 1H), 7.85–7.72 (m, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.52–7.43 (m,
3H), 7.34–7.30 (m, 4H), 7.25 (t, J = 1.0 Hz, 1H), 6.80–6.74 (m 2H), 3.60 (s, 3H);
13C NMR (DMSO-d6, 125 MHz) d 158.7, 147.7, 147.0, 138.1, 138.0, 136.5, 131.6,
131.5, 131.4, 130.8, 130.2, 129.0, 128.7, 128.3, 127.8, 125.5, 124.2, 121.0, 120.6,
113.0, 55.0; IR (KBr film): 3052, 1607, 1569, 1515, 1471, 1409, 1331, 1297,
1. Bentley, K. W.. In The Isoqunoline Alkaloids; Hardwood Academic: Amsterdam,
1998; Vol. 1.
2. For recent examples, see: (a) Vasdev, N.; LaRonde, F. J.; Woodgett, J. R.; Garcia,
A.; Rubie, E. A.; Meyer, J. H.; Houle, S.; Wilson, A. A. Bioorg. Med. Chem. 2008, 16,
5277–5284; (b) Yoon, T.; De Lombaert, S.; Brodbeck, R.; Gulianello, M.;
Chandrasekhar, J.; Horvath, R. F.; Ge, P.; Kershaw, M. T.; Krause, J. E.; Kehne, J.;
Hoffman, D.; Doller, D.; Hodgetts, K. J. Bioorg. Med. Chem. Lett. 2008, 18, 891–
896; (c) Trotter, B. W.; Nanda, K. K.; Kett, N. R.; Regan, C. P.; Lynch, J. J.; Stump,
G. L.; Kiss, L.; Wang, J.; Spencer, R. H.; Kane, S. A.; White, R. B.; Zhang, R.;
Anderson, K. D.; Liverton, N. J.; McIntyre, C. J.; Beshore, D. C.; Hartman, G. D.;
Dinsmore, C. J. J. Med. Chem. 2006, 49, 6954–6957; (d) Örtqvist, P.; Peterson, S.
D.; Åkerblom, E.; Gossas, T.; Sabnis, Y. A.; Fransson, R.; Lindeberg, G.; Danielson,
U. H.; Karlén, A.; Sandström, A. Bioorg. Med. Chem. 2007, 15, 1448–1474.
3. (a) Durola, F.; Sauvage, J. P.; Wenger, O. S. Chem. Commun. 2006, 171–173; (b)
Sweetman, B. A.; Müller, H.; Guiry, P. J. Tetrahedron Lett. 2005, 46, 4643–4646;
(c) Ford, A.; Sinn, E.; Woodward, S. J. Chem. Soc., Perkin Trans. 1 1997, 927–934.
1248, 1176, 1072, 1033, 968, 839, 774, 707, 672 cmꢀ1
; HRMS calcd for
C25H20N3O [M+H]+: 378.1601. Found: 378.1595. Anal. Calcd for C25H19N3O: C,
79.55; H, 5.07; N, 11.13. Found: C, 79.22; H, 5.00; N, 11.16.